Type
Depending on the set of functions, boilers are divided into single-circuit and dual-circuit.
-
Single-circuit boilers are equipped with one heat exchanger, in which the heat from fuel combustion is transferred to the heat medium of the heating system. The only function of such boilers is space heating. It is technically possible to use single-circuit boilers to provide hot water, but this requires an additional tank (the so-called indirect water heater).
- In
dual-circuit boilers, the primary heat exchanger is supplemented by a secondary one. Due to this, such a boiler, in addition to heating the room, also provides a hot water supply. In this case, both running water and water accumulated in a special tank(see Built-in water heater tank) can be used.
Condensing
Boilers generate additional heat by condensing water vapour from combustion products. In such units, the combustion gases, before entering the flue, are passed through an additional heat exchanger, in which they are cooled, and the water vapour condenses and transfers thermal energy to the coolant. It allows you to increase the efficiency by 10 – 15% compared to boilers of the classical design — up to the fact that in many similar models, the efficiency exceeds 100% (for more details, see "Efficiency").
The condensation principle of operation is most often found in gas models (see "Power source"); however, solid and liquid fuel boilers with this feature are also produced.
Power consumption
The maximum electrical power consumed by the boiler during operation. For non-electric models (see Energy source), this power is usually low, as it is required mainly for control circuits and it can be ignored. Regarding electric boilers, it is worth noting that the power consumption in them is most often somewhat higher than the useful one since part of the energy is inevitably dissipated and not used for heating. Accordingly, the ratio of useful and consumed power can be used to evaluate the efficiency of such a boiler.
Coolant max. T
The maximum operating temperature of the heat medium in the boiler system when operating in heating mode.
DHW circuit max. pressure
The maximum pressure in the hot water circuit (DHW) at which it can operate for a long time without failures and damage. See "Heating circuit maximum pressure".
DHW max. T
The maximum temperature of domestic hot water supplied by a dual-circuit boiler. For comparison, we note that water begins to be perceived as warm, starting from 40 °C, and in centralized hot water supply systems, the temperature of hot water is usually about 60 °C (and should not exceed 75 °C). Accordingly, even in the most modest models, this figure is about 45 °C, in the vast majority of modern boilers, it is not lower than 50 °C, and in some models, it can even exceed 90 °C.
Also when heated to a given temperature, the temperature difference ("ΔT") may be different — depending on the initial temperature of the cold water. And the performance of the boiler in the DHW mode directly depends on ΔT; see below for performance details.
Warm start
Support for the warm start function by the boiler.
This function is found only in dual-circuit models (see "Type"): it accelerates the water heating for the domestic hot water system and ensures a constant leaving water temperature. To do this, the boiler automation monitors and controls the temperature of the water in the secondary heat exchanger of the boiler. The presence of a "warm start" affects the cost of the unit, but this is offset by the ease of use.
Efficiency
The efficiency of the boiler.
For electric models (see "Energy source"), this parameter is calculated as the ratio of net power to consumed; in such models, indicators of 98 – 99% are not uncommon. For other boilers, the efficiency is the ratio of the amount of heat directly transferred to the water to the total heat amount released during combustion. In such devices, the efficiency is lower than in electric ones; for them, a parameter of more than 90% is considered good. An exception is gas condensing boilers (see the relevant paragraph), where the efficiency can even be higher than 100%. There is no violation of the laws of physics here. It is a kind of advertising trick: when calculating the efficiency, an inaccurate method is used that does not take into account the energy spent on the formation of water vapour. Nevertheless, formally everything is correct: the boiler gives out more thermal energy to the water than is released during the combustion of fuel since condensation energy is added to the combustion energy.
Combustion chamber
The type of combustion chamber provided in the boiler.
—
Open(atmospheric). Combustion chambers of this type consume air from the room in which the boiler is installed, and the combustion products are naturally removed through the flue. Boilers of this design are simple and inexpensive but have specific installation requirements: the room must be well-ventilated, and the height of the chimney must be at least 4 m to ensure sufficient draft.
—
Closed(turbocharged). Closed combustion chambers are isolated from the room in which the boiler is installed: combustion air is taken from the street, and combustion products are removed there. For this, a coaxial flue is usually used — in the form of two pipes nested one inside the other: combustion products are removed through the inner one, and the outer one is responsible for the air supply. Turbocharged combustion chambers are more complicated and expensive than open ones, and the maximum length of the chimney is limited. On the other hand, such a boiler does not burn the air in the room, and it can be installed anywhere, regardless of the ventilation efficiency.
— Is absent. Boilers powered by electricity do not have combustion chambers (see "Source of Energy").