Cleaning type
Type(s) of cleaning for which the vacuum cleaner is intended.
Almost all modern units have the function
of dry cleaning. In turn,
wet cleaning is usually provided as an addition to the dry mode and is rarely used as the
only cleaning mode. Here is a more detailed description of these options:
— Dry. Traditional cleaning without the use of water: the vacuum cleaner draws in air, collects debris in the dust container and purifies the air through a filter system. It is considered somewhat less effective than wet, but it has practically no restrictions on its use: almost any material can be cleaned in this way. In addition, such cleaning is much easier for the user (no need to fill or even drain water). And the units themselves, which have only a dry mode, are simpler and more inexpensive than similar models with a wet cleaning function. In addition, for some types of vacuum cleaners, this is the only available option. A typical example is handheld models of both household and industrial specialization (see "Product type").
We note that the possibility of water suction (see below) can be provided even in vacuum cleaners with a purely dry type of cleaning (most often in industrial and household models — see "Product type").
— Wet and dry. The ability to carry out not only the dry cleaning described above but also wet cleaning. It is in this fo
...rmat that all washing vacuum cleaners work (see below). However, we emphasize that not every unit with the wet cleaning function is a washing vacuum, and even the water suction function (also see below) is not always available in such models. The fact is that many vacuum cleaners with this feature use the simplest possible operation mode: water from a special container is supplied to a special nozzle and moistens the floor after cleaning. However, even such a treatment method significantly increases efficiency compared to conventional dry cleaning. An additional nozzle collects dirt that the vacuum cleaner could not draw in, and moistening the floor refreshes the room and prevents dust from rising into the air that could remain after cleaning. For washing vacuum cleaners, in turn, other advantages are also common. The main disadvantages of all models with two types of cleaning are the complexity of the design, greater weight and higher cost than similar units with only a dry format.
— Wet. This option means that the vacuum cleaner is designed for wet cleaning only and does not require a dry operation. See above for details on these modes. Here we note that it is a very rare option used in single models of conventional and upright vacuum cleaners (see "Product type").Motor power
Rated power consumed by the vacuum cleaner. In models with power adjustment (see below), the maximum value is taken into account in this case. We are talking about the characteristics of the installed motor, which is the main, and in most vacuum cleaners, the only consumer of energy.
Higher power increases suction force and improves overall cleaning efficiency. In addition, a more powerful unit is easier to equip with a capacious dust collector. On the other hand, only vacuum cleaners of the same type with the same types of dust collectors can be directly compared by this parameter (see above for both). And even in such cases, the actual suction force (see below) may be different — and it is it that determines the real efficiency. However, the total power also allows you to generally evaluate the capabilities of the vacuum cleaner, including in comparison: a 1500 W model will significantly outperform its 800 W counterpart in efficiency (although it is impossible to say exactly by how much). But what definitely depends on this indicator is energy consumption.
As for specific power values, they are largely related to the type of device. For example, handheld models, robots and uproght units have low power —
less than 1500 W(and often noticeably less). Such values are quite popular among other types of vacuum cleaners (conventional, industrial, workshop, etc.), but among them there are already more solid indicators —
...f="/list/90/pr-1067/">1500 – 1750 W,
1750 – 2000 W and even
more than 2000 W.Suction force
The suction force provided by the vacuum cleaner. It is indicated by the maximum vacuum (negative pressure) that the unit can create at the working nozzle.
Note that this parameter is sometimes confused with the suction power described above, which is indicated in watts. Yes, suction force to some extent determines the efficiency of the unit. However, this efficiency also depends on the performance (airflow). And the suction power, indicated in watts, takes into account both of these parameters — it is determined by multiplying the suction force by the performance (see above for more details). For this reason, there is no strict relationship between this force and suction power: for example, a vacuum of 25,000 Pa can be found in models with 250 W, 200 W and even 150 W of power.
As for the practical significance of this spec, in general, a higher suction force allows you to work more efficiently with high resistance. For example, when processing carpets with a long pile. On the other hand, more pascals (with the same number of watts) means less airflow and, accordingly, less efficiency for large amounts of work at low resistance (for example, cleaning large rooms with parquet floors). Thus, it makes sense to pay attention to this indicator mainly in cases where high suction force is fundamental for you. In other cases, it is worth evaluating the capabilities of the vacuum cleaner in terms of suction power in watts.
Note that for a number of
...reasons, the suction power is most often specified for robot vacuum cleaners (see “Produc type”). For such models, a value of 1500 Pa and below is considered very small, 1500 – 2000 Pa — medium, 2000 – 2500 Pa — high, more than 2500 Pa — very high.
It is also worth mentioning that the indication of suction force is often used as a publicity trick — to improve the impression of the product. For example, the suction power of 150 watts in itself is quite modest. But at the same time, the suction force of such a vacuum cleaner can be 25,000 Pa — a very impressive figure, especially for an inexperienced buyer, but having a very indirect relation to real efficiency. Especially often, such tricks are used among upright models and the already mentioned robots — these varieties initially do not differ in high power in watts. For many of these units, the characteristics only indicate the vacuum in pascals without specifying the suction power. It further enhances the impression: for example, in the specs of a modest robot, the figure "3000 Pa" looks much more impressive than "40 W". However, such figures have a very weak relation to the real capabilities of the unit and if they are not supplemented by data on suction power in watts, they should be considered solely as bait for a not particularly sophisticated buyer.Water tank capacity
A capacity of a tank for water or detergent a vacuum cleaner with a wet cleaning function is equipped with. (see "Cleaning type").
Large capacity allows you to work longer without refilling the tank. On the other hand, an increase in capacity has a corresponding effect on the size, weight and cost of the unit. Thus, manufacturers choose this parameter taking into account the general specialization and the “weight category” of a particular model. So, in robots (see "Type"), the volume of the water tank is, by definition, small. Even in the heaviest models, it does not exceed 650 mL. But other types of vacuum cleaners can differ markedly in this parameter.
In general, for non-robot units, a capacity
of 1 liter or less is considered very limited,
1 – 2 liters is small,
2 – 3 liters is average,
more than 3 liters is above average. However, it much depends on the type. For example, in conventional vacuum cleaners, the capacity does not exceed 2.5 liters, and "for workshop" models this is very little — in most cases, they have a tank capacity of 3 liters or more.
Mapping system
The mapping system is provided in many modern robots. It allows you to determine the size of the room and the location of various obstacles present in it, as well as fix the route travelled by the vacuum cleaner. There are various systems according to their principle of operation, among which there are three types. Methods for building a map based on data from a sensor or a camera belonging to the basic level. But building a map using a
laser rangefinder (lidar) gives more accurate results and elevates the device to a higher category. Accordingly, the presence of such a system affects the overall cost but provides several advantages. Firstly, cleaning efficiency is noticeably increased: the robot remembers which areas have already been cleaned and pays maximum attention to untreated areas. Secondly, movements are carried out along optimal trajectories, the shortest paths; this saves energy and extends battery life. Thirdly, it becomes possible to effectively clean large spaces of complex shape (for example, the entire apartment). And if the vacuum cleaner is controlled through an application on a smartphone or other gadget, the created map is displayed in this application. It gives various additional features: correcting the collected data, real-time device control, building routes, limiting cleaning through the application (see above), etc. P.
As for the methods of building maps (and further naviga
...tion), there are mainly such options:
— Camera. Such systems work because the robot, using a digital camera, “examines” the room, remembering its shape and the location of objects. A fairly simple, inexpensive and at the same time practical way: usually, the camera is supplemented by an object recognition algorithm, thanks to which it can recognize obstacles stored in memory, regardless of their position in space. It is useful when you have items that are frequently moved around, such as chairs. In addition, if the map is displayed in an application on a smartphone, it looks like not just a conventional diagram but a real image, which is very convenient. The disadvantages of this option include perhaps a slightly lower accuracy than that of sensors and even more so rangefinders. However, it is not critical, and in some models, information from the camera can be supplemented with data from sensors, which completely reduces this drawback to zero.
— Sensors. Creating a map through the operation of various special sensors. Most often, such systems use sensors for obstacles and fall protection (see "Robot features"), working in conjunction with an inertial module that determines the current position of the robot in space. Receiving a signal from one of the sensors, the robot saves data on the trigger point; from such points, as a result, the map is formed. It is a fairly reliable method. It is inferior in accuracy to rangefinding cartography (see below) but it is also cheaper. The disadvantages of this type of mapping include some inconvenience when managing via the application. The map is displayed in the form of a scheme map, which is not always convenient for the user. In addition, vacuum cleaners with such systems are unable to respond in advance to a change in the situation — this change is determined only when the sensor is triggered again.
— Rangefinder (laser). Building a map using a laser range finder — lidar. Usually, such a rangefinder covers the space all 360 ° around the vacuum cleaner, scanning the space at a high frequency (hundreds and even thousands of measurements per second in all directions). It allows you to create very accurate maps in a short time and with a minimum of movement in space. In addition, the rangefinder is used not only during the initial mapping but also during further work. Thanks to this, the robot instantly reacts to changes in the environment and corrects the trajectory of movement. The main disadvantage of such systems is their rather high cost. In addition, as in the case of sensors, when controlling the vacuum cleaner from a smartphone, the map is displayed in the form of a scheme map, which is somewhat less convenient than when using cameras.
— Rangefinder + camera. It is the most advanced and functional option: the laser provides high accuracy in determining distances and a quick response to changes in the environment. And the camera allows you to create not just scheme maps but realistic images of premises that are convenient when controlled via a smartphone. The main disadvantage of such combined systems is their very high cost. Therefore, they are extremely rare, mainly in premium robot vacuum cleaners. Voice assistant
Types of
voice assistants supported by the robot vacuum cleaner.
As the name implies, this function allows you to control the robot using voice commands. However, we emphasize that in this case, we are not talking about the voice recognition system built into the vacuum cleaner but about compatibility with an external device on which the corresponding voice assistant is installed — a smartphone, tablet, smart speaker, etc. Thus, to use voice control, an additional device will inevitably be required; on the other hand, there are no problems with the search for such a device nowadays. And in itself, such a control method often turns out to be more convenient than a command from the remote control or searching for the desired option in the control application.
As for specific assistants, the most popular nowadays are (in alphabetical order) Amazon Alexa, Apple Siri, Google Assistant. And in robot vacuum cleaners, compatibility can be provided both with one of them and with several at once. The specific control functionality available through the voice assistant should be specified separately for each model. It is also worth paying attention to the supported languages: for Siri, the language must be selected in the settings, for the Google Assistant, automatic language recognition is available (some adjustment may be required), and in Alexa (as of early 2021) support for the Russian language is not provided at all.
Battery run time
The operating time of a battery-powered vacuum cleaner (see "Power supply") on a single battery charge.
Usually, the average operating time in normal mode is indicated here. Accordingly, in fact, the battery life of the vacuum cleaner may differ slightly from the claimed one, depending on the chosen application format. Nevertheless, the operating time indicated in the specifications is a fairly reliable indicator; it can be used both for a general assessment of battery life and for comparing the selected vacuum cleaner with other models.
Separately, we note that increasing battery life requires either the use of more capacious (and therefore more expensive and heavier) batteries or a decrease in engine power (and the efficiency of the unit as a whole). So it is worth looking specifically for a long working vacuum cleaner if these moments are outweighed by a long operating time.