Maximum flight time
Maximum flight time of a quadcopter on one full battery charge. This indicator is quite approximate, since it is most often indicated for ideal conditions - in real use, the flight time may be less than stated. However, by this indicator it is quite possible to evaluate the general capabilities of the copter and compare it with other models - a longer declared flight time in practice usually means higher autonomy.
Note that for modern copters, a flight time
of 20 minutes or more is considered a good indicator, and in the most “long-lasting” models it can exceed 40 minutes.
Matrix size
The physical size of the photosensitive element of a camera. Measured diagonally, often indicated in fractions of an inch — for example, 1/3.2" or 1/2.3" (respectively, the second matrix will be larger than the first). Note that in such designations it is not the “ordinary” inch (2.54 cm) that is used, but the so-called "Vidiconovsky", which is less than a third and is about 17 mm. This is partly a tribute to the tradition that comes from television tubes — "vidicons" (the forerunners of modern matrices), partly — a marketing ploy that gives buyers the impression that the matrices are larger than they really are.
Anyway, for the same resolution (number of megapixels), a larger matrix means a larger size for each individual pixel; accordingly, on large matrices, more light enters each pixel, which means that such matrices have higher photosensitivity and lower noise levels, especially when shooting in low light conditions. On the other hand, increasing the diagonal of the sensor inevitably leads to an increase in its cost.
Aperture
Aperture - a characteristic that determines how much the camera lens attenuates the light flux passing through it. It depends on two main characteristics - the diameter of the active aperture of the lens and the focal length - and in the classical form is written as the ratio of the first to the second, while the diameter of the effective aperture is taken as a unit: for example, 1 / 2.8. Often, when recording the characteristics of a lens, the unit is generally omitted, such a record looks, for example, like this: f / 1.8. At the same time, the larger the number in the denominator, the smaller the aperture value: f / 4.0 lenses will produce a darker image than models with f / 1.4 aperture.
Number of megapixels
Resolution of the matrix in the standard camera of the quadrocopter.
Theoretically, the higher the resolution, the sharper, more detailed image the camera can produce. However, in practice, the quality of the "picture" is highly dependent on a number of other technical features - the size of the matrix, image processing algorithms, optical properties, etc. Moreover, when increasing the resolution without increasing the size of the matrix, the image quality may drop, because. significantly increases the likelihood of noise and extraneous artifacts. And for shooting video, a large number of megapixels is not required at all: for example, to shoot Full HD (1920x1080) video, which is considered a very solid format for quadrocopters, a sensor of only 2.07 megapixels is enough.
Note that high resolution is often a sign of an advanced camera with high image quality. However, this quality is not determined by the number of megapixels, but by the characteristics of the camera and the special technologies used in it. Therefore, when choosing a quadcopter with a camera, you should look not so much at the resolution as at the class and price category of the model as a whole.
Photo resolution
The maximum resolution of photos that the standard quadcopter camera can take. This parameter is directly related to the resolution of the matrix (see above): usually, the maximum resolution of a photo corresponds to the full resolution of the matrix. For example, for pictures of 4000x3000 pixels, a sensor of 4000 * 3000=12 megapixels is provided.
Theoretically, a higher resolution of photography allows you to achieve highly detailed photographs, with good visibility of fine details. However, as in the case of the overall resolution of the matrix, high resolution does not guarantee the same overall quality, and you should focus not only on this parameter, but also on the price category of the quadcopter and its camera.
Also note that the high resolution of the camera affects the volume of the materials being shot, for their storage and transmission, more voluminous drives and “thick” communication channels are required.
Viewing angles
The viewing angle provided by the standard quadcopter camera; for optics with adjustable zoom, usually, the maximum value is taken into account.
The viewing angle is the angle between the lines connecting the centre of the lens to the two opposite extreme points of the visible image. Usually measured along the diagonal of the frame, but there may be exceptions. As for the specific values of this parameter, in modern copters they can range from 55 – 60 ° to 180 ° and even more. At the same time, a wider angle (ceteris paribus) allows you to simultaneously fit more space into the frame; and a narrower one covers a smaller space, however, the objects that are in the frame look larger, it is easier to see individual small details on them. So when choosing by this parameter, you should consider what is more important for you: wide coverage or an additional zoom effect.
Information display
The presence of an information display on the quadcopter control panel.
Note that this feature should not be confused with the FPV broadcast screen (see below). The information display is usually a simple segment display capable of displaying numbers, individual letters, and, on some models, a limited set of special icons. However, even such equipment significantly expands the capabilities of the remote control and allows the operator to receive a lot of additional information: battery charge, signal level, range, flight altitude, etc. At the same time, the auxiliary screen is inexpensive and can be used even in low-cost models. And in advanced drones, it may well complement the broadcast display: separating data into different screens contributes to ease of control.
Motor type
The type of motors used in the quadcopter.
Modern copter drones are traditionally equipped with electric motors (usually one for each propeller), and by type, such motors are divided into relatively simple collector and more advanced
brushless ones. Here is a detailed description of each variety:
— Collector. In motors of this type, a collector is used to switch the current between the windings — a mechanical device in the form of a ring mounted on the motor shaft and divided into separate sections. The current to this ring is supplied by a pair of fixed contacts — the so-called brushes. Such a design is very simple and inexpensive, moreover, it is repaired without much difficulty. On the other hand, collector motors have a relatively low efficiency, and brush contacts wear out and fail quite quickly due to constant friction (especially with frequent operation at high speeds). Therefore, the main scope of their application are relatively simple and inexpensive quadcopters — in more advanced technology, the brushless motors described below are often used.
— Brushless. In such motors, current switching between windings is carried out using electronic circuits, without the use of moving parts. This complicates and somewhat increases the cost of the design, but it gives a number of advantages over collector units. First of all, brushless motors are more efficient and experience less wear when running at full po
...wer. In addition, it is easier to adjust the actual power in them, the range of such adjustment is wider, the accuracy is higher, and the reaction to changing the settings is almost instantaneous. With all this, modern technologies make it possible to create relatively inexpensive and affordable brushless motors, the cost of which is often only a small part of the price of the entire copter. So this option is quite popular in modern drones, it can be found even among relatively inexpensive models.Battery capacity
The capacity of the battery supplied with the quadcopter.
Theoretically, a larger battery can provide a longer charge time. However, keep in mind that this time also depends on the power consumption of the copter — and it is determined by the power of the engines, dimensions and weight, as well as a number of other features. In addition, the actual battery capacity is determined not only by ampere-hours, but also by its nominal voltage. Therefore, only quadcopters with the same battery voltage and similar operating characteristics can be compared by amp-hours; and it is best to evaluate battery life by directly claimed flight time (see below).