United Kingdom
Catalog   /   Computing   /   Components   /   Drive Cases & Docks

Comparison Asus TUF Gaming A2 vs Asus ROG Strix Arion Lite

Add to comparison
Asus TUF Gaming A2
Asus ROG Strix Arion Lite
Asus TUF Gaming A2Asus ROG Strix Arion Lite
Compare prices 7Compare prices 5
TOP sellers
Drop protection MIL-STD-810H, dust and moisture resistance IP68. Q-latch mechanism for tool-free drive installation and fixation.
TUF Gaming A1 supports both NVMe PCIe and SATA SSD interfaces to support up to 4TB of M.2 2242/2260/2280 SSDs. Compatible with mobile devices, laptops, PCs, and the latest generation of PlayStation and Xbox gaming consoles.
Aluminium housing with thermal pads. Built-in Aura lighting. No tools are needed to install the SSD into the ROG Strix Arion Lite container and secure the drive.
In the ROG Strix Arion Lite container, you can install drives with an M.2 interface (NVM, PCI-Express) form factors 2230/2242/2260/2280 with an M or B + M key. The maximum storage capacity is 2 TB.
Typeexternalexternal
Featuresportableportable
Drive form factorSSD M.2SSD M.2
Drive interfaceSATA/PCI-E 4.0 4xPCI-E 3.0 4x
ConnectivityUSB C 3.2 gen 2x2USB C 3.2 gen2
Materialplastic/rubbersteel
Storage slots11
Max. drive size4 TB2 TB
Power sourceUSB portUSB port
Size116x56x15 mm124x48x11 mm
Color
Added to E-Catalognovember 2024june 2023
Glossary

Drive interface

Drive interface provided in the design of the pocket, in other words, a way to connect the drive.

It makes sense to use pockets for internal drives, so the appropriate interfaces are used for connection. Also note that in internal models (see "Type") the interface of the drive is often not specified, since it corresponds to the interface for connecting the pocket itself to the computer. As for specific options, here are the most relevant for today:

— SATA 3. The newest and most advanced, and in storage pockets, the most common version of the SATA interface. This interface is designed for internal storage, primarily hard drives; for SSD, it is relatively poorly suited, since it does not allow realizing all the potential of solid-state memory. Specifically, SATA 3 provides data transfer rates up to 600 MB / s, while earlier SATA drives can also be connected to such connectors — unless the connection speed is limited by the capabilities of a slower interface.
It is worth saying that in addition to traditional 2.5" and 3.5" SATA drives (see "Form factor") connected via the connector of the same name, nowadays you can also find M.2 form factor SSD modules that also use a SATA format connection . Such models are noticeably inferior in speed to solutions for M.2 PCI-E, but they are also cheaper. They are connected to the M.2 socket, which must support SATA.

— SATA 2. The predecessor of the SATA 3 described above; this version allows you to t...ransfer data at speeds up to 300 Mbps. In pockets, it is much less common, mainly among outdated models — for example, external solutions using USB 2.0 (see "Connection").

— PCI-E. A variant found exclusively on M.2 drive models (see Drive Form Factor). Such modules use the M.2 connector, the connection through which is most often implemented in the PCI-E format. At the same time, the specifications, usually, specify the version and number of PCI-E lines — the supported speeds directly depend on this. For example, the marking "PCI-E 3.0 2x" means 2 lines of PCI-E version 3.0; this version provides 984 Mbps per lane, so the overall speed is about 1.97 GB/s. However, nowadays, more advanced options are more common — for example, PCI-E 3.0 4x, where the speed is already about 3.9 Gbps. At the same time, drives and pockets with different versions and the number of PCI-E lanes in this case are usually compatible with each other, except that the speed will be limited by the capabilities of a slower interface.

— SATA/SAS. Models that support connection via two interfaces — SATA or SAS. The latter is a specialized standard used primarily in server systems; pockets with this feature also have a corresponding purpose. And this versatility is achieved due to the fact that SAS controllers are also compatible with SATA drives, so you can provide both types of connectors in your pocket. At the same time, SAS noticeably outperforms SATA in terms of operating speed — it is up to 22.5 Gbps, depending on the version (against a maximum of 6 Gbps in SATA). However, note that the SAS interface does not have a strictly defined type of connector — several types of plugs can be used for such a connection; this point needs to be specified separately.

Connectivity

The method of connecting a pocket with an installed drive to a computer, provided for in the design.

Note that this parameter is specified only in cases where the connection interface differs from the drive interface (see above). A similar feature is typical for all external models and docking stations (see "Type"): nowadays they most often use USB 3.2 gen1, less often — USB 2.0 or USB-C of one version or another (see below). In internal solutions, the drive connector rarely differs from the pocket connector, although there are exceptions.

It is also worth mentioning that in external models, the connection method is usually determined by the type of bundled cable; moreover, such a cable is often made removable, with the possibility of replacing it with a “cord” with a different type of plug.

As for specific connection methods, here are their main features:

— USB 2.0. USB is used to connect external peripherals, including pockets; this is the most popular modern interface of this purpose. And version 2.0 is the oldest USB standard in use today. The possibilities of such a connection are very limited — in particular, the power supply through the connector is 2.5 W, and the maximum data transfer rate does not exceed 480 Mbps. This is noticeably slower than even SATA 2 (3 Gbps), not to mention SATA 3 (6Gb/s); so in general this stan...dard is considered obsolete, and in pockets with this type of connection, the overall speed is limited just by the capabilities of USB 2.0. However, maintaining this interface is inexpensive; for simple tasks that are not associated with large volumes of information, it often turns out to be quite enough; in addition, USB 2.0 devices are fully compatible with newer USB ports. So nowadays you can still find pockets with this type of connection — these are basically the simplest and most inexpensive models.

— USB 3.2 gen1. Full size USB connector (not USB-C) compliant with version 3.2 gen1. This version (formerly known as USB 3.1 gen1 and USB 3.0) is the direct successor to USB 2.0, delivering up to 10x faster data transfer rates—up to 4.8Gbps—and more power. The mentioned speed is almost one-on-one with the capabilities of the popular SATA 3 internal interface; therefore, pockets with this type of connection are extremely common nowadays.

— USB-C 3.2 gen1. Connecting to a USB-C connector that complies with version 3.2 gen1. In terms of capabilities, this method is identical to the “normal” USB 3.2 gen1 described above, the difference lies only in the type of connector. USB-C is a relatively new standard used in both fixed and portable electronics. This connector is noticeably smaller than the standard USB A (slightly larger than microUSB), while it has a convenient double-sided design. However, specifically in computers and even laptops, USB-C ports are used much less frequently than full-sized USBs, so this option is relatively rare in pockets.

USB C 3.2 gen2. Connecting to a USB-C connector that complies with version 3.2 gen2. See above for more details on USB-C in general. And USB 3.2 gen2 (formerly known as 3.1 gen2 or simply 3.1) is the successor to 3.2 gen1, with even more advanced features: the maximum connection speed in this standard is 10 Gbps. On the other hand, for SATA drives, such speed is unnecessary, support for this version is quite expensive, and USB-C 3.2 gen2 connection ports are still relatively rare. Therefore, this option has not received distribution in pockets either: it is provided only in individual models for M.2 SSD with PCI-E connection, where the speed of the internal interface is already measured in tens of gigabits per second.

— PCI-E. Connect to a standard PCI-E slot on the motherboard. In other words, such pockets are connected to the computer in the same way as video adapters, sound cards, and other expansion cards. This design is used in select internal models for M.2 SSD drives; using such a pocket, you can connect a similar drive to a desktop PC even if the native M.2 ports on the motherboard are busy, unavailable, not suitable for connection (for example, they use the SATA interface, while the drive is made for PCI-E), or absent altogether.
Note that such pockets are usually compatible with M.2 PCI-E SSD modules without problems, but compatibility with M.2 SATA should be specified separately (although such functionality is also found). It is also worth mentioning that PCI-E slots and devices for them can have a different number of lines, and the general rule here is this: the number of lines in a slot on the motherboard must be no less than that of the connected board. However, in pockets with such a connection, usually less than 4 lines are provided, so they can be connected to PCI-E connectors starting from 4x.

— IDE. Outdated interface for connecting internal drives. It is extremely rare in modern pockets — in separate models designed to install modern or HDD / SSD in outdated computers without SATA and other relevant connectors.

Material

The main material from which the body of the pocket is made.

— Plastic / rubber. This category includes models that use plastic and/or rubber in the construction of cases. The specific ratio and features of the use of these materials are different: the body can be all-plastic, have rubber lining at the ends to increase impact protection, be completely covered with rubber, etc. And in covers (see "Type"), these materials can also be supplemented with others — such as EVA, neoprene or even cloth. Anyway, plastic / rubber cases are found exclusively in external models, including docking stations. Such pockets are somewhat inferior to metal pockets in terms of strength and reliability, but they are cheaper, and in normal everyday use, the mentioned difference is not critical.

— Steel. Cases made of metal are most often made of steel, but there are other options (for example, aluminium alloys). In the inner pockets, only this option is found — this is due to a number of features of such accessories. As for external models in this design, they are much stronger and more reliable than plastic ones, besides, the metal case creates an additional feeling of solidity. The downside of these advantages is the higher price.

Max. drive size

The maximum storage capacity supported by the pocket. In models with multiple disks/SSDs (see "Drive Slots"), this item indicates the largest total volume supported by the device; by dividing this capacity by the number of slots, you can determine the maximum allowable capacity of each individual drive.

The limitation on the maximum volume is relevant mainly for external models, including docking stations (see "Type"). This is due to the fact that fundamentally different interfaces are used for the drive and for connecting the pocket itself in such models (most often SATA and USB, respectively, see above for details). For the normal interaction of such interfaces, an electronic controller is required; and the larger the volume of the installed drive (s) — the higher the requirements for the performance of such a controller.

Note that, other things being equal, supporting large volumes is more expensive, and capacious drives themselves are not cheap. Therefore, when choosing according to this indicator, it is worth considering real needs, and not chasing the maximum numbers.
Asus TUF Gaming A2 often compared
Asus ROG Strix Arion Lite often compared