United Kingdom
Catalog   /   Computing   /   Components   /   PSUs

Comparison Gamemax GX Rampage GX-750 Pro BK vs Gamemax RGB Smart PRO RGB 750 PRO

Add to comparison
Gamemax GX Rampage GX-750 Pro BK
Gamemax RGB Smart PRO RGB 750 PRO
Gamemax GX Rampage GX-750 Pro BKGamemax RGB Smart PRO RGB 750 PRO
Expecting restockOutdated Product
TOP sellers
Power750 W750 W
Form factorATXATX
Specs
PFCactiveactive
Efficiency90 %90 %
Cooling systemsemi-passive (fan off)active (fan)
Fan size135 mm140 mm
Fan bearinghydrodynamichydrodynamic
Certification80+ Gold80+ Gold
ATX12V version33.1
Power connectors
MB/CPU power supply24+8+8(4+4) pin24+8+8(4+4) pin
SATA68
MOLEX33
PCI-E 8pin (6+2)43
PCI-E 16pin11
Floppy
Cable systemmodularmodular
Cable length
MB650 mm600 mm
CPU650 mm650 mm
SATA500 mm500 mm
MOLEX500 mm500 mm
PCI-E550 mm550 mm
Max. power
+3.3V20 А20 А
+5V20 А20 А
+12V162 А60 А
-12V0.3 А0.5 А
+5Vsb2.5 А2.5 А
+12V745 W720 W
+3.3V +5V100 W100 W
-12V3.6 W6 W
+5Vsb12.5 W12.5 W
General
Over voltage protection (OVP)
Over power protection (OPP)
Short circuit protection (SCP)
ProtectionOTP, OCP, UVPUVP, OCP, OTP
Manufacturer's warranty2 years
Lighting
Lighting syncmulti compatibility
Dimensions (HxWxD)86x150x160 mm86x150x170 mm
Added to E-Catalogdecember 2024august 2024
Glossary

Cooling system

Active cooling system. Uses a fan that constantly operates to remove heat from internal components. Unlike passive cooling, the active system provides better heat dissipation and stability under high loads, preventing overheating. However, it creates noise. To eliminate this, fans in such power supplies can have dynamic speed control (AFC – Automatic Fan Control), reducing speed at low power consumption.

Semi-passive. Active cooling systems with automatic fan shutdown in situations where the load on the power supply is low and heat generation is reduced. Let us remind you that systems of this type are more efficient than passive ones, but they consume additional energy and create noise during operation. Accordingly, at low loads, when intensive cooling is not required, it is wiser to turn off the fans — this saves energy and reduces the noise level.

Passive(radiators). Compared to fans, radiators have a number of advantages: for example, they do not create any noise and do not require their own power supply (thus reducing overall energy consumption). On the other hand, they are significantly less efficient, as a result — the power of power supplies with passive cooling does not exceed 600 W. In addition, such power supplies are quite expensive.

Fan size

The diameter of the fan(s) in the power supply cooling system.

The large diameter allows to achieve good efficiency at relatively low RPMs, which in turn reduces noise and power consumption. On the other hand, large fans are more expensive than small ones and take up a lot of space, which affects the dimensions of the entire PSU. We also emphasize that a small fan is not yet a sign of a cheap power supply — quite advanced models can also have such equipment, in order to reduce dimensions.

As for specific diameters, the smallest value that can be found in modern consumer-grade PSUs is 80 mm. The most popular option is 120 mm, this size gives good efficiency and a relatively low noise level at a reasonable price and dimensions. Larger diameters are somewhat less common — 135 mm and 140 mm.

ATX12V version

A standard for power supplies that supplements the ATX specifications regarding power supply along the 12 V line. Introduced into use since the time of the Intel Pentium 4 processor. In the first series of the standard, the +5 V line was mainly used; from version 2.0, the +12 V line was introduced to fully power the components computer. Also in the second generation, a 24-pin power connector appeared, used in most modern motherboards.

SATA

The number of SATA power connectors provided in the PSU.

Nowadays, SATA is the standard interface for connecting internal hard drives, and it is also found in other types of drives (SSD, SSHD, etc.). Such an interface consists of a data connector connected to the motherboard, and a power connector connected to the PSU. Accordingly, in this paragraph we are talking about the number of SATA power plugs provided in the PSU. This number corresponds to the number of SATA drives that can be simultaneously powered from this model.

PCI-E 8pin (6+2)

The number of PCI-E 8pin (6+2) power connectors provided in the PSU design.

Additional PCI-E power connectors (all formats) are used to additionally power those types of internal peripherals for which 75 W is no longer enough, supplied directly through the PCI-E socket on the motherboard (video cards are a typical example). In PC components, there are two types of such connectors — 6pin, providing up to 75 W of additional power, and 8pin, giving up to 150 W. And the 8pin (6 + 2) plugs used in power supplies are universal: they can work with both 6-pin and 8-pin connectors on the expansion board. Therefore, this type of plug is the most popular in modern PSUs.

As for the quantity, on the market you can find models for 1 PCI-E 8pin (6 + 2) connector, for 2 such connectors, for 4 connectors, and in some cases — for 6 or more. Several of these plugs can be useful, for example, when connecting several video cards — or for a powerful high-performance video adapter equipped with several PCI-E additional power connectors.

Floppy

The presence of at least one Floppy power connector in the PSU.

Initially, this connector was intended to power floppy disk drives, hence the name. It is also known under the designation "mini-Molex". Anyway, this standard is generally considered obsolete, but it is still used by some specific types of components, and therefore continues to be used in power supplies.

+12V1

The maximum current that the PSU is capable of delivering to the first power line is + 12V.

For more information about power lines in general, see "+3.3V". Here it is worth mentioning that 12 V is the most popular voltage among computer power connectors. It is used in almost all such connectors (with a few exceptions), and some plugs (for example, additional PCI-E power for 6 or 8 connectors) use only 12-volt lines — and in the + 12V format. And the division of + 12V power into several separate lines is used for safety purposes — in order to reduce the current flowing through each individual wire, and thus prevent excessive load and overheating of the wiring. However, some manufacturers do not specify the maximum current for individual + 12V lines and give only a general value in the characteristics; in such cases, this number is indicated in this paragraph.

-12V

The maximum current that the PSU is capable of issuing to the power line is -12V.

For more information about power lines in general, see "+3.3V". Here it is worth mentioning that 12 V is the most popular voltage among computer power connectors. However, most often it is used in the + 12V format; and the -12V line performs mainly a service function, it is almost never found in other connectors, except for the motherboard power plug (for 20 or 24 pins).

+12V

The maximum power that the PSU is capable of delivering to the + 12V power line.

See "Maximum current and power" for details on power lines in general. Here it is worth mentioning that 12 V is the most popular voltage among computer power connectors. It is used in almost all such connectors (with a few exceptions), and some plugs (for example, additional PCI-E power for 6 or 8 connectors) use only 12-volt lines — and in the + 12V format. So this indicator is one of the most important characteristics of any PSU.

Note that many power supplies have several separate + 12V power lines. In such cases, the total power is indicated here, which, usually, is divided equally between the lines.