United Kingdom
Catalog   /   Computing   /   Components   /   PSUs

Comparison Deepcool PN-D PN750D vs Deepcool PF PF750

Add to comparison
Deepcool PN-D PN750D
Deepcool PF PF750
Deepcool PN-D PN750DDeepcool PF PF750
Compare prices 3
from £144.56 
Expecting restock
User reviews
0
0
1
0
TOP sellers
Power750 W750 W
Form factorATXATX
Specs
PFCactiveactive
Efficiency90 %85 %
Cooling systemactive (fan)active (fan)
Fan size120 mm120 mm
Fan bearinghydrodynamichydrodynamic
Certification80+ Gold80+
ATX12V version3.12.4
Power connectors
MB/CPU power supply24+8+8(4+4) pin24+8 (4+4) pin
SATA86
MOLEX22
PCI-E 8pin (6+2)34
PCI-E 16pin1
Cable systemnon-modularnon-modular
Cable length
MB550 mm550 mm
CPU700 mm610 mm
SATA450 mm450 mm
MOLEX930 mm450 mm
PCI-E550 mm510 mm
Max. power
+3.3V20 А15 А
+5V20 А15 А
+12V162.5 А62 А
-12V0.3 А0.3 А
+5Vsb3 А2.5 А
+12V750 W744 W
+3.3V +5V110 W100 W
-12V3.6 W3.6 W
+5Vsb15 W12.5 W
General
Over voltage protection (OVP)
Over power protection (OPP)
Short circuit protection (SCP)
ProtectionOTP, OCP, UVP, SIP, NLOUVP
Manufacturer's warranty10 years2 years
Dimensions (HxWxD)86x150x140 mm86x150x140 mm
Added to E-Catalogapril 2024january 2022
Glossary

Efficiency

Efficiency, in this case — the ratio of the power of the power supply (see "Power") to its power consumption. The higher the efficiency, the more efficient the power supply, the less energy it consumes from the network at the same output power, and the cheaper it is to operate. Efficiency may differ depending on the load; the characteristics can indicate both the minimum efficiency and its value at an average load (50%).

It should be noted that compliance with one or another level of 80PLUS efficiency directly depends on this indicator (for more details, see "Certificate").

Certification

The presence or absence of an 80+ certificate for the power supply. This certificate indicates high energy efficiency: to obtain it, the efficiency (see above) must be at least 80%, and in different modes (20%, 50% and 100% of the maximum load). There are several degrees of 80+:

80+. The original version of the certificate, assuming an efficiency of at least 82% (at least 85% for 50% load).

80+ White. The second name of the original 80+ certificate (see above).

80+ Bronze — efficiency not less than 85% (for half load — 88%).

80+ Silver — respectively 87% (90% for half load).

80+ Gold — 89% (92% for half load)

80+ Platinum — 90% (94% for half load).

80+ Titanium — 94% (96% for half load).

The power factor (see "PFC Type") must be at least 0.9 for the lower levels and at least 0.95 for the Platinum level. Also note that for redundant power used in server systems, the efficiency requirements are somewhat lower.

ATX12V version

A standard for power supplies that supplements the ATX specifications regarding power supply along the 12 V line. Introduced into use since the time of the Intel Pentium 4 processor. In the first series of the standard, the +5 V line was mainly used; from version 2.0, the +12 V line was introduced to fully power the components computer. Also in the second generation, a 24-pin power connector appeared, used in most modern motherboards.

MB/CPU power supply

The number and type of connectors provided in the PSU to power the motherboard or processor.

This parameter is written as the sum of several numbers, for example, "24+4". The first number in such an entry means the number of contacts in the connector for powering the motherboard; in the vast majority of cases, this is just 24, since modern motherboards use a 24-pin connector as standard. The second number describes the socket for powering the processor; most entry-level and mid-range CPUs use 4-pin power, but powerful chips may require 8-pin power. There can be several 4- or 8-pin connectors — based on powerful high consumption processors.

A separate case is the blocks of the "24 (20 + 4)" format. They have two separate plugs — 20 pin and 4 pin, which allows you to power both 24-pin motherboards and older 20-pin motherboards from such power supplies. At the same time, such models do not provide a separate power supply for CPU — it is powered only through the socket, and the 4-pin plug cannot be connected to any other components except the motherboard.

Now on the market there are PSUs with such power supply for the motherboard: 24 pin (20+4), 24+4 pin, 24+8(4+4) pin, 24+8+8(4+4) pin.

SATA

The number of SATA power connectors provided in the PSU.

Nowadays, SATA is the standard interface for connecting internal hard drives, and it is also found in other types of drives (SSD, SSHD, etc.). Such an interface consists of a data connector connected to the motherboard, and a power connector connected to the PSU. Accordingly, in this paragraph we are talking about the number of SATA power plugs provided in the PSU. This number corresponds to the number of SATA drives that can be simultaneously powered from this model.

PCI-E 8pin (6+2)

The number of PCI-E 8pin (6+2) power connectors provided in the PSU design.

Additional PCI-E power connectors (all formats) are used to additionally power those types of internal peripherals for which 75 W is no longer enough, supplied directly through the PCI-E socket on the motherboard (video cards are a typical example). In PC components, there are two types of such connectors — 6pin, providing up to 75 W of additional power, and 8pin, giving up to 150 W. And the 8pin (6 + 2) plugs used in power supplies are universal: they can work with both 6-pin and 8-pin connectors on the expansion board. Therefore, this type of plug is the most popular in modern PSUs.

As for the quantity, on the market you can find models for 1 PCI-E 8pin (6 + 2) connector, for 2 such connectors, for 4 connectors, and in some cases — for 6 or more. Several of these plugs can be useful, for example, when connecting several video cards — or for a powerful high-performance video adapter equipped with several PCI-E additional power connectors.

PCI-E 16pin

the 16-pin PCI-E power connector is designed to replace the existing 8-pin counterparts. It consists of twelve lines for current supply and four more for data transmission. The connector provides up to 600 W of additional power, which is a fourfold increase in power compared to 8-pin versions of the interface. Additional PCI-E connectors of all formats are used to power those types of internal peripherals that are no longer enough with 75 W supplied directly through the PCI-E socket on the motherboard.

+3.3V

The maximum values of current and power that the PSU can provide on individual power lines.

The power line can be simply described as a pair of contacts for connecting a particular load; one of these contacts is “ground” (with zero voltage), and the second has a certain voltage with a plus or minus sign, this voltage corresponds to the voltage of the power line. In this paragraph, it is + 3.3V (such power is present in 20- and 24-pin connectors for motherboards, in SATA power connectors and some other types of connectors).

In general, power and currents are rather specific parameters that the average user rarely needs — mainly when connecting high-power components such as video cards, as well as when starting a PSU without a computer to power other electronics (for example, amateur radio stations). It is also worth mentioning that the sum of the maximum powers on all lines can be higher than the total output power of the PSU — this means that all lines cannot operate at full power at the same time. Accordingly, when the PSU is fully loaded, some of them will produce less power than the maximum possible.

+5V

The maximum current that the PSU is capable of issuing + 5V to the power line. For more information about power lines in general, see "+3.3V". Also note here that + 5V power, in addition to connectors for motherboards (for 20 and 24 pins), is also found in Molex and SATA plugs, as well as some other specific types of connectors.
Deepcool PN-D often compared
Deepcool PF often compared