United Kingdom
Catalog   /   Computing   /   Laptops & Accessories   /   Laptops

Comparison Lenovo ThinkBook 16p G5 IRX [16p G5 IRX 21N50013RA] vs Lenovo Legion Slim 7 16IRH8 [7 16IRH8 82Y30089RA]

Add to comparison
Lenovo ThinkBook 16p G5 IRX (16p G5 IRX 21N50013RA)
Lenovo Legion Slim 7 16IRH8 (7 16IRH8 82Y30089RA)
Lenovo ThinkBook 16p G5 IRX [16p G5 IRX 21N50013RA]Lenovo Legion Slim 7 16IRH8 [7 16IRH8 82Y30089RA]
Outdated ProductOutdated Product
TOP sellers
Typelaptoplaptop
Screen
Screen size16 "16 "
Screen typeIPSIPS
Surface treatmentanti-glareanti-glare
Screen resolution3200x2000 (16:10)3200x2000 (16:10)
Refresh rate165 Hz165 Hz
Brightness430 nt430 nt
Contrast1200 :11200 :1
Colour gamut (DCI-P3)100 %100 %
TÜV Rheinland certificate
HDRHDR10, Dolby Vision HDR10, Dolby Vision
NVIDIA G-Sync
Light sensor
CPU
SeriesCore i9Core i9
Model14900HX13900H
Code nameRaptor Lake (14th Gen)Raptor Lake (13th Gen)
Processor cores24 (8P+16E)14 (6P+8E)
Total threads3220
CPU speed1.6 GHz1.9 GHz
TurboBoost / TurboCore frequency5.8 GHz5.4 GHz
CPU TDP55 W45 W
Passmark CPU Mark47419 score(s)29912 score(s)
RAM
RAM32 GB32 GB
Max. RAM32 GB32 GB
RAM typeDDR5DDR5
RAM speed5600 MHz5200 MHz
Slots2built-in + 1 slot
Graphics card
Graphics card typededicateddedicated
Graphics card seriesNVIDIA GeForceNVIDIA GeForce
Graphics card modelRTX 4060RTX 4060
Video memory8 GB8 GB
Memory typeGDDR6GDDR6
GPU TDP115 W115 W
Advanced Optimus
VR
3DMark0649745 points50480 points
3DMark Vantage P90275 points90275 points
Storage
Drive typeSSD M.2 NVMeSSD M.2 NVMe
Drive capacity1024 GB1024 GB
M.2 drive interfacePCI-E 4.0 4xPCI-E 4.0 4x
M.2 drive size22x80 mm22x80 mm
Additional M.2 connector11
Addittional M.2 connectors interfacePCI-E 4.0 4xPCI-E 4.0 4x
Additional M.2 drive size22x80 mm22x80 mm
Connections
Connection ports
HDMI
v 2.1
HDMI
v 2.1
Card reader
USB A 5Gbps (3.2 gen1)2
USB A 10Gbps (3.2 gen2)1 pc3
USB C 10Gbps (3.2 gen2)1 pc
USB4 40 Gbps21
Thunderbolt interfacex2 v4x1 v4
Alternate Mode
Monitors connection33
Wi-FiWi-Fi 6E (802.11ax)Wi-Fi 6E (802.11ax)
Bluetoothv 5.3v 5.1
Multimedia
Webcam1920x1080 (Full HD)1920x1080 (Full HD)
Camera shutter
Speakers42
Brand acousticsHarman KardonHarman
Audio decodersDolby Atmos
Security
fingerprint scanner
3D face scanner
kensington / Noble lock
fingerprint scanner
Keyboard
BacklightwhiteRGB per key
Key designisland typeisland type
Num block
Waterproof
Input deviceglass touchpadglass touchpad
Battery
Battery capacity80 W*h100 W*h
Operating time6.2 h9.1 h
Powered by USB-C (Power Delivery)
Power Delivery140 W
Fast charge
Charging time50% in 30 min70% in 30 min
Power supply Included300 W230 W
General
Preinstalled OSno OSno OS
Docking station connection
MIL-STD-810 Military Standard
Materialaluminiumaluminium
Dimensions (WxDxT)355x258x20 mm358x259x20 mm
Weight2.2 kg2 kg
Color
Added to E-Catalogjuly 2024october 2023
Glossary

NVIDIA G-Sync

Laptop support for NVIDIA G-Sync technology.

This feature is only found on models equipped with discrete NVIDIA graphics cards. It is used to match the frame rate of the screen and the frame rate of the signal arriving at it — so that these frequencies match. This avoids flickering, twitching, and other image artifacts that can occur due to out-of-sync. This feature is especially useful for games where the frame rate of the video signal can "float" depending on the load on the graphics core; in fact, most laptops with G-Sync are specifically for gaming.

A similar solution for AMD video cards is called FreeSync.

Light sensor

A sensor that monitors the intensity of ambient light when working with a laptop. Mainly used for automatic brightness control. So, in a darkened room, the backlight of the screen is dimmed, which reduces eye fatigue and helps save energy; and in bright light, the brightness of the display also increases so that the image remains visible.

Note that, technically, a webcam can be used to estimate ambient light and adjust screen brightness (see below). However, most often this is not a regular way to use it; so the presence of a light sensor is indicated mainly for those devices where a separate specialized sensor is responsible for this function.

Model

The specific model of the processor installed in the laptop, or rather, the processor index within its series (see above). Knowing the full name of the processor (series and model), you can find detailed information on it (up to practical reviews) and clarify its capabilities.

Code name

The code name for CPU installed in the laptop.

This parameter characterizes, first of all, the generation to which the processor belongs, and the microarchitecture used in it. At the same time, chips with different code names can belong to the same microarchitecture/generation; in such cases, they differ in other parameters - general positioning, belonging to certain series (see above), the presence / absence of certain specific functions, etc.

Nowadays, the following code names are relevant in Intel processors: Coffee Lake, Comet Lake, Ice Lake, Tiger Lake, Jasper Lake, Alder Lake, Raptor Lake (13th Gen), Alder Lake-N, Raptor Lake (14th Gen), Meteor Lake (Series 1), Raptor Lake (Series 1), Lunar Lake (Series 2), Arrow Lake (Series 2). For AMD, the list looks like this: Zen 2 Renoir, Zen 2 Lucienne, Zen 3 Cezanne, Zen 3 Barcelo, Zen 3+ Rembrandt, Zen 3+ Rembrandt R, Zen 2 Mendocino, Zen 3 Barcelo R, Zen 4 Dragon Range, Zen 4 Phoenix Zen 4 Hawk Point, Zen 5 Strix Point, Zen 5 Strix Halo, Zen 5 Krackan Point. Detailed data on different code names can be found in special sources.

Processor cores

The number of cores in the laptop CPU.

The core is a part of the CPU designed to process one thread of instructions (and sometimes more, for such models, see "Number of threads"). Nowadays, in laptops you can find dual-core, quad-core, six-core, eight-core, ten-core, 12-core, 14-core CPUs. Also note that recently configurations with different types of cores as part of a single CPU are gaining popularity. Such chips are built on a hybrid architecture that combines high performance and energy-efficient cores. They operate at different clock speeds, have different amounts of pre-installed cache memory and are designed to solve different problems. In particular, such CPUs are found in Intel CPUs (from the 12th generation) and Apple.

Theoretically, more cores means higher performance, especially in parallel computing tasks or when processing multiple resource-intensive tasks at the same time. However, in practice this is true only all else being equal – that is, with a similar microarchitecture, clock frequency, cache volumes and other key parameters. Modern CPUs can vary greatly on these parameters – in itself, a greater number of cores does not mean superiority. This is especially true for dual- and quad-core chips: a mobil...e-level CPU (for example, Snapdragon, see "CPU series") with 4 cores may well be inferior in capabilities to a dual-core desktop series chip (like Core i3 or i5, which are often used in universal laptops with the "optimal" set of specifications for different tasks). When evaluating CPUs with two or four cores, it is necessary to look, first of all, at the general set of characteristics. But the presence of six, eight or more cores is almost certainly a sign of a powerful CPU. Such equipment is typical mainly for advanced gaming and professional laptops.

Total threads

The number of threads supported by the laptop processor.

A thread is a sequence of instructions executed by a processor. Initially, each processor core was designed for one such sequence, and the number of threads was equal to the number of cores. However, in modern CPUs, multithreading technologies are increasingly being used, which allow loading each core with two instruction sequences at once. Such technologies have different names for different manufacturers, but the principle of their operation is the same: during the inevitable pauses in the execution of one of the threads, the kernel does not idle, but works with a different sequence. Accordingly, the total number of threads in such processors is twice the number of cores; such a scheme of work significantly increases productivity (although, of course, it also affects the cost).

CPU speed

The clock speed of the processor installed in the laptop (for multi-core processors, the frequency of each individual core).

Theoretically, a higher clock speed has a positive effect on performance, as it allows the processor to perform more operations per unit of time. However, in fact, the capabilities of the CPU depend on a number of other characteristics — primarily on the series to which it belongs (see above). It even happens that of the two chips, the more performant in the overall result is the slower one. With this in mind, it makes sense to compare by clock frequency only processors of the same series, and ideally, also of the same generation; and the laptop as a whole should be judged by the complex characteristics of the system, as well as by the results of tests (see below).

TurboBoost / TurboCore frequency

Processor clock speed achieved in TurboBoost or TurboCore "overclocking" mode.

Turbo Boost and Turbo Core technologies are used by different manufacturers (Intel and AMD, respectively), but they have the same principle of operation: load distribution from more loaded processor cores to less loaded ones to improve performance. The "overclocking" mode is characterized by an increased clock frequency, and it is indicated in this case.

For more information about clock speed in general, see the relevant paragraph above.

CPU TDP

The amount of heat generated by the processor during normal operation. This parameter determines the requirements for the cooling system necessary for the normal operation of the processor, therefore it is sometimes called TDP - thermal design power, literally “thermal (cooling) system power”. Simply put, if the processor has a heat dissipation of 60 W, it needs a cooling system that can remove at least this amount of heat. Accordingly, the lower the TDP, the lower the requirements for the cooling system.
Lenovo ThinkBook 16p G5 IRX often compared
Lenovo Legion Slim 7 16IRH8 often compared