United Kingdom
Catalog   /   Home & Renovation   /   Autonomous Power Supply   /   UPS

Comparison Logicpower 12V LPM-PSW-1500VA Black 1500 VA vs Logicpower LPE-B-PSW-2300VA Plus 2300 VA

Add to comparison
Logicpower 12V LPM-PSW-1500VA Black 1500 VA
Logicpower LPE-B-PSW-2300VA Plus 2300 VA
Logicpower 12V LPM-PSW-1500VA Black 1500 VALogicpower LPE-B-PSW-2300VA Plus 2300 VA
Outdated ProductOutdated Product
User reviews
1
0
0
0
TOP sellers
Typesmartsmart
Form factorstandard (flat)standard (flat)
Switching to battery6 ms10 ms
Input
Input voltage1 phase (230V)1 phase (230V)
Input voltage range140 – 275 В150 – 307 В
Max. current20 А50 А
Bypass (direct connection)is absentis absent
Output
Output voltage1 phase (230V)1 phase (230V)
Peak output power1500 VA2300 VA
Rated output power1050 W1600 W
Output voltage accuracy5 %
Efficiency95 %
Output waveformpure sine wave (PSW)pure sine wave (PSW)
Output frequency50/60 Hz50/60 Hz
Redundant sockets22
Socket typetype F (Schuko)type F (Schuko)
Terminal blocks
Battery
Battery in set
no battery
no battery
Battery(ies) connection to UPS12 В24 В
Min. charging current1 А
Max. charging current40 А
Charging current regulation
LiFePO4 charging support
Cold start
External battery connection
Protection
Protection
short circuit protection
overload protection
external battery overcharge protection
short circuit protection
overload protection
external battery overcharge protection
noise filtering
sound alarm
Fuseautoauto
General
Screen
Operating temperature0 – 40 °C0 – 40 °C
Noise level40 dB
Dimensions (HxWxD)120x255x290 mm165x285x295 mm
Weight12.9 kg18.4 kg
Added to E-Catalogfebruary 2024april 2023
Glossary

Switching to battery

The time required to transfer the load from mains power to battery power. In standby and interactive UPSs (see Type), a short-term power failure occurs at this moment — accordingly, the shorter the time to switch to the battery, the more uniform the power supply is provided by the source during a power failure. Ideally, the switching time for the traditional 50 Hz AC frequency should be less than 5 ms (a quarter of one cycle of the sine wave). With inverter UPSs, the transfer time is, by definition, zero.

Input voltage range

In this case, the input voltage range is implied, in which the UPS is able to supply a stable voltage to the load only due to its own regulators, without switching to the battery. For redundant UPSs (see "Type") this range is quite small, approximately 190 to 260 V; for interactive and especially inverter ones, it is much wider. Some UPS models allow you to manually set the input voltage range.

Max. current

The maximum current drawn by the UPS. In fact, the current reaches its maximum value only when the UPS is operating from the mains with maximum load power and a completely discharged battery. However, when calculating the load on the power grid, this parameter should be taken into account.

Peak output power

The maximum output power supplied by the UPS, in other words, the highest apparent load power allowed for this model.

This indicator is measured in volt-amperes (the general meaning of this unit is the same as that of the watt, and different names are used to separate different types of power). The total power consumption of the load, implied in this case, is the sum of two powers — active and reactive. Active power is actually effective power (it is indicated in watts in the characteristics of electrical appliances). Reactive power is the power wasted by coils and capacitors in AC devices; with numerous coils and/or capacitors, this power can be a fairly significant part of the total energy consumption. Note that for simple tasks, you can use data on effective power (it is often given for UPS — see below); but for accurate electrical calculations it is worth using the full one.

The simplest selection rule for this indicator is: the maximum output power of the UPS in volt-amperes should be at least 1.7 times higher than the total load power in watts. There are also more detailed calculation formulas that take into account the characteristics of different types of load; they can be found in special sources. As for specific values, the most modest modern UPSs give out 700 – 1000 VA, or even less — this is enough to power a PC of average performance; and in the most "heavyweight" models, th...is figure can be 8 – 10 kVA and higher.

Rated output power

The effective output power of the UPS is, in fact, the maximum active power of the load that can be connected to the device.

Active power is consumed directly for the operation of the device; it is expressed in watts. In addition to it, most AC devices also consume reactive power, which is "wasted" (relatively speaking) is spent by coils and capacitors. Apparent power (denoted in volt-amperes) is precisely the sum of active and reactive power; it is this characteristic that should be used in accurate electrical calculations. See "Maximum output power" for details; here we note that when selecting a UPS for a relatively simple application, it is quite possible to use only effective power. This is at least easier than converting the watts claimed in the characteristics of the connected devices into full power volt-amps.

The most modest modern "uninterruptibles" give out less than 500 watts. 501 – 1000 W can be considered an average value, 1.1 – 2 kW is above average, and in the most powerful models this figure exceeds 2 kW and can reach very impressive values (up to 1000 kW or more in some industrial class UPS).

Output voltage accuracy

This parameter characterizes the degree of difference between the AC voltage at the output of the UPS and the perfect voltage, the graph of which has the shape of a regular sinusoid. The perfect voltage is so named because it is the most uniform and creates the least unnecessary load on the connected devices. Thus, the distortion of the output voltage is one of the most important parameters that determine the quality of the power received by the load. A distortion level of 0% means that the UPS produces a perfect sine wave, up to 5% — slight sine wave distortion, up to 18% — strong distortion, from 18% to 40% — a trapezoidal signal, more than 40% — a square wave.

Efficiency

Efficiency (coefficient of performance) in the case of a UPS is the ratio of its output power to the power consumed from the network. This is one of the main parameters that determine the overall efficiency of the device: the higher the efficiency, the less energy the UPS wastes (due to heating parts, electromagnetic radiation, etc.). In modern models, the efficiency value can reach 99%.

Terminal blocks

The terminals are used to connect wires to the UPS — directly, without using any plugs. For models of relatively low power, such a possibility is not needed, but for powerful devices with at least a few kilowatts (used, in particular, for server cabinets), this connection option often turns out to be optimal, or even the only acceptable one. A terminal block is a set of several terminals arranged in a row. Note that the number and purpose of such terminals may be different, this point should be clarified according to the official documentation.

Battery(ies) connection to UPS

Rated voltage of external batteries that can be used in the UPS.

For more information about such batteries, see "External battery connection", here it is worth saying that the voltage of the external battery must correspond to the voltage for which the UPS is designed. If these parameters differ, at best, the UPS simply will not start, and at worst, overloads and even a fire are possible.

In general, the more powerful the UPS, the higher the voltage of the external batteries it is designed for. However, there is no strict rule. Some models even allow for multiple voltage options, such as 96/108/120 V. It is also worth noting that a power source with the required voltage can be assembled from several lower voltage batteries connected in series: for example, 3 batteries of 12 V can be used to achieve 36 V.

It is important to emphasize that the standard voltages for most modern UPS systems are multiples of 12 V. However, car batteries cannot be used in these devices. Despite having identical voltages, car batteries are designed for a fundamentally different mode of operation. Using them in a UPS can result in, at best, improper functioning of the device, and at worst, fires and even explosions.
Logicpower 12V LPM-PSW-1500VA Black often compared
Logicpower LPE-B-PSW-2300VA Plus often compared