Max weight
The maximum load allowed for a bicycle is, in other words, the maximum weight that it can normally carry in normal use. Of course, when calculating the load, the weight of both the cyclist himself and the additional load that he carries with him is taken into account.
The permissible load must definitely not be exceeded: even if the bike does not break down immediately, off-design loads can weaken the structure, and an accident can occur at any time. Also note that it is desirable to have a certain weight margin — at least 15 – 20 kg: this can be useful in case of transporting heavy loads and will give an additional guarantee in emergency situations (for example, when a wheel gets into a pit). Considering that the average weight of an adult is about 70 – 80 kg, bicycles with a permissible load
of up to 100 kg can be classified as "lightweights",
from 100 to 120 kg — to the middle category,
more than 120 kg — to "heavy trucks".
Frame material
—
Steel. Steel is distinguished by high strength and rigidity, in terms of resistance to deformation, it noticeably surpasses other alloys and is inferior only to carbon fiber. At the same time, such frames dampen vibrations well, are inexpensive, and in the event of a breakdown, they are easily repaired. On the other hand, steel is heavy, three times heavier than aluminium and twice as heavy as titanium; therefore, such frames are found mainly among inexpensive mountain and city bikes, for which a lot of weight is not critical. It is also worth considering that this material is susceptible to corrosion if the protective coating is damaged.
—
Chromium molybdenum steel(Cro-Mo). An advanced variation of the steel described above. By themselves, chromium-molybdenum alloys have high strength and reliability, and frames made from them can have different wall thicknesses (depending on the load that a particular section is subjected to) — this allows you to slightly reduce weight. Thanks to this, Cro-Mo alloys are found even among fairly advanced road bikes, and they are also popular in touring models. At the same time, such frames cost much more than “ordinary” steel ones.
—
Aluminium. Actually, bicycles do not use pure aluminium, but various alloys based on it. They differ somewhat in characteristics, but they have a number of common features, the main of whi
...ch is low weight combined with good strength characteristics. Due to this, aluminium alloys are widely used in road bikes, as well as in touring mountain bikes (see “Intended Use”). The main disadvantage of these materials is rigidity: they absorb vibrations worse than steel, which is why they are poorly suited for models without shock absorption (see below), and with a strong impact, such a frame will break rather than bend.
— Carbon. Resin-bonded carbon fiber composite. It is used in high-end bicycles, as it is very expensive, but it is characterized by very high strength combined with low weight. Moreover, the properties of carbon fiber make it possible to increase strength not just in certain areas, but in certain directions, which contributes to even greater reliability. Note that carbon frames can be either solid (monolithic) or composite — in the latter case, individual elements are connected by metal parts, which reduces the cost, but makes the structure susceptible to corrosion. It is also worth considering that the quality of carbon in general depends on the price category of the bike, and relatively inexpensive frames can be sensitive to strong point impacts. This material is almost impossible to repair.
— Titan. A fairly advanced material that combines high strength, elasticity (which provides soft vibration damping), corrosion resistance and very low weight. However, the cost of such frames is quite high, and therefore they are used mainly in premium mountain and road bikes.
— Magnesium alloy. This material is notable primarily for its very low weight (many times lighter than aluminium), while it has good stiffness and elasticity characteristics, dampens vibrations well, and its price is relatively low. At the same time, magnesium alloys have a number of significant drawbacks. In particular, they do not tolerate impacts, especially point impacts, and are also extremely sensitive to corrosion even with minor damage to the protective coating, which is why such frames are very demanding for care and storage.Suspension
The presence or absence of a depreciation system on a bicycle, as well as the type of this system.
—
Without depreciation (rigid). In such models, the wheels are fixed directly to the rigid elements of the frame; there are no depreciation devices. Due to this, the design of the bicycle is simple, the weight is small, the cyclist feels all the features of the road topography as much as possible, and the maximum efficiency of pedaling is also achieved, which is important, for example, for road models (see "Destination"). At the same time, structural rigidity is a "double-edged sword". On the one hand, "feeling for the road" is important for
BMX and some mountain models (see "Purpose"); on the other hand, the lack of shock absorption significantly increases the load on both the structure and the rider himself, leads to increased wear, fatigue and some risk of injury on rough roads.
—
Depreciation of the front fork (hard tail). The most popular type of cushioning in adult bikes (see "Age Group"), especially urban and mountain types (see "Purpose"). In accordance with the name, in such bicycles, the shock-absorbing device is installed only on the front fork, while the rear wheel is rigidly fixed. The presence of a shock absorber somewhat increases the weight of the structure and complicates its maintenance, however, the advantages of such a scheme significantl
...y outweigh the disadvantages: hard-tails combine good handling, “road feel” and ride comfort, including and on rough terrain.
— Rear fork. Bicycles in which only the rear wheel is damped, while the front wheel is rigidly fixed. The rear shock absorber is designed to provide additional comfort when hitting various bumps, and the absence of a front shock absorber reduces the overall cost of the machine. This option is found mainly in urban models, including electric bicycles (see "Application"); in other varieties, the use of rear shock absorption is not practical.
— Two-suspension (full suspension). Bicycles equipped with shock absorbers on both wheels — a fork in front and a special suspension in the back. Such models are as comfortable as possible for driving on rough terrain, because. They dampen the vibrations felt by the cyclist best and provide the best grip on uneven tracks. At the same time, the presence of a rear shock absorber "eats" part of the energy coming from the pedals, and you have to spend more effort to ride. To avoid this, many two-suspension bikes can be provided with front and rear suspension lockouts (see below), but full suspension complicates the design anyway, increases its weight and price. Therefore, this type of cushioning is relatively rare, mainly in certain varieties of mountain bikes (in particular, for cross-country and freeride; see "Purpose").Suspension type (fork)
Front fork suspension type (if available, see "Suspension"). All shock absorption systems in bicycles work in two directions: vibration damping (damping) and impact energy absorption (cushioning). Accordingly, they have two main components: a damper and a shock absorber. Depending on the design features of these elements, the following types of depreciation are distinguished:
—
Spring-elastomer. In this case, the role of a shock absorber is played by an elastic spring, and the role of a damper is played by a rod made of an elastic, well-compressible material, the so-called elastomer. This type appeared as a development of conventional spring damping systems, it is more durable, but poorly suited for low temperatures — the elasticity of the elastomer in such conditions decreases, which negatively affects the characteristics of the system.
—
Spring-oil. Systems using a spring as a shock absorber and an oil cartridge as a damper. This design is somewhat more resistant to low temperatures than spring-elastomer, and in general has quite good characteristics, due to which it is quite widely used in various types of bicycles. The main disadvantage is the higher (on average) cost.
—
Air-oil. Combined systems consisting of an air cylinder that acts as a shock absorber and an oil cartridge that acts as a damper. They appeared as a development of “pur
...e” air systems, which had a serious drawback: even with high-quality maintenance, the seals wore out rather quickly, which could disable the shock absorber. Air-oil systems are more durable and easier to maintain, while being quite efficient and weighing little. The latter is especially valuable for cross-country (see "Purpose"), where it is required to combine depreciation with a low weight of the machine.Folding
Possibility to fold the bike. This feature greatly simplifies storage and transportation — you can easily transport the bike in the boot of a car, train, etc. At the same time, the
folding design inevitably loses in strength to the one-piece non-folding one, and therefore such bicycles are quite rare and are designed for simple conditions like city driving.
Front brake
The type of brake fitted to the front wheel of a bicycle. The first word in the name of the brake indicates the place of application of the braking force, the second — the design feature of the entire braking system.
—
Rim (V-brake). Rim brakes are called brakes that work by pressing the brake pads against the wheel rim. They transfer the braking force from the handle to the pads by means of a cable pull. The common advantages of all rim brakes are the simplicity of design, light weight, low cost, good interchangeability of parts, as well as the minimum load on the hub and spokes. On the other hand, such brakes wear out the pads and rim, require periodic adjustment, and lose effectiveness when the rim is dirty, iced or warped.
Structurally, the differences between the subtypes of rim brakes lie in the way they are attached to the bicycle frame. In addition, each variety has found its own scope. So, V‒brake is common in teenage, touring and budget mountain bikes, the clamp subtype has found its way into road and city bikes, and the U-brake is practiced in BMX bikes.
— Disk mechanical. In disc systems, braking is carried out by pressing the pads not to the wheel rim, but to a special brake disc rigidly fixed on its axis. The braking force, as in mechanical rims (see above), is transmitted to the pads through a special cable. The main advantages of disc systems are significantly more power than rim systems, as we
...ll as better modulation (for modulation, see "Rim hydraulic" above). In addition, they are less sensitive to weather conditions (because the disc is quite high and clogs less than the rim), they easily carry the “eights” on the rims, and the elements of the system wear out more slowly and are not so demanding to adjust. Among the disadvantages are greater weight, high cost, a tendency to overheat, an increase in the load on the spokes and wheel hub, as well as difficulty in repair — the last point is aggravated by the fact that different models of even one manufacturer are often not compatible in terms of spare parts. However, despite all this, disc brakes are quite widely used in extreme riding bikes, especially mid-range and high-end models.
— Disc hydraulic. A variant of disc brakes (see above), in which not a cable is used to transfer force from the handle to the pads, but a hydraulic system — a sealed structure filled with liquid and including a piston system. One of the main advantages of hydraulics is excellent modulation, it allows you to very accurately control the braking force. On the other hand, such a drive is more complicated and more expensive than a mechanical one, and if the circuit is damaged and the hydraulic fluid leaks, the brakes become useless. Therefore, hydraulic systems are used relatively rarely, mainly in professional bicycles.
— Drum. Brakes using a special drum, inside which brake pads are installed; in bicycles, the role of the drum can be played directly by the wheel hub or a special part of the hub. Anyway, the pads are pressed against the drum from the inside, and the entire brake structure is closed. This is one of the main advantages of this option: the mechanism is protected from pollution, external factors such as dirt or snow practically do not affect the effectiveness of the brakes. In addition, the advantages of drum mechanisms include the fact that they practically do not require maintenance, do not wear out the rim and do not lose efficiency when it is bent. On the other hand, such brakes turn out to be quite bulky, and in terms of efficiency they are inferior to rim and even more so disc counterparts. Therefore, this option is found mainly in urban bikes.
— Roller. A variety of drum brakes (see above), in which the pressing of the brake pads to the drum is ensured by a special mechanism — roller. In this case, the brake drum is often performed separately from the bushing. Such solutions were developed as an attempt to combine the advantages of disc and drum brakes in one mechanism, and partly succeeded: roller systems are noticeably more powerful than classic drum brakes, they are well protected from dust and dirt, require virtually no maintenance and work effectively even with a curved rim. On the other hand, the weight, dimensions and price of such brakes turned out to be very significant, they worsen the roll and get quite hot with constant use; and protection against pollution is not as high quality as in drum systems.Max range
The maximum range of an e-bike (see "Application") is the maximum distance that it can be ridden using the electric motor on a single battery charge.
Usually, the characteristics indicate the range at the most economical way to use the battery: in the pedal assist mode (see "Operating modes") and at a relatively low speed. Accordingly, in fact, this parameter may turn out to be lower than the claimed one, especially if you drive in full electric mode. Nevertheless, in terms of power reserve, it is quite possible to evaluate and compare various models with each other.
Note that it makes sense to specifically look for a model with a power reserve
of more than 50 km if long trips are planned without recharging along the way. For episodic rides, you can pay attention to cars
with less battery life — they are simpler and cheaper.
Battery capacity
The capacity of the battery that the e-bike is equipped with (see "Application"), expressed in ampere-hours.
The battery capacity directly affects the operating time on a charge and, accordingly, the power reserve. However, in fact it hardly makes sense to evaluate these parameters by the number of ampere-hours. Firstly, the actual battery life will depend not only on the characteristics of the battery, but also on the power of the engine (which determines the power consumption of the machine). Secondly, the actual amount of energy stored in the battery depends not only on the capacity in ampere-hours, but also on the rated voltage; a more reliable unit in this sense is watt-hours, see Battery Capacity below for more details. So when choosing, it is better to focus not so much on the number of ampere-hours, but on the power reserve directly claimed by the manufacturer.
Max speed
The maximum speed that the e-bike can reach (see "Application").
The specific meaning of this parameter depends on the supported modes of operation (see below). If the machine has a full-fledged electric traction mode, the maximum speed is given at the maximum speed of the electric motor. If only pedaling assistance is supported, then this paragraph indicates the speed that is guaranteed to be kept on it for an unlimited time without applying excessive effort; in some areas you can go faster, but for a long time it will not be possible to maintain this mode.
Most modern e-bikes have a top speed
of up to 25 km/h, but there are also
faster models.