United Kingdom
Catalog   /   Mobile Phones & Gadgets   /   Mobile Phones & Accessories   /   Mobile Phones

Comparison Xiaomi Redmi Note 14 Pro 5G 512 GB / 12 GB vs Poco X7 512 GB / 12 GB

Add to comparison
Xiaomi Redmi Note 14 Pro 5G 512 GB / 12 GB
Poco X7 512 GB / 12 GB
Xiaomi Redmi Note 14 Pro 5G 512 GB / 12 GBPoco X7 512 GB / 12 GB
Compare prices 6Compare prices 8
TOP sellers
Screen operation mode with wet hands.
Possibility of working with wet hands.
Compared to Poco X6, the communication modules, processor, front camera have been improved, and higher moisture protection is declared.
Display
Main display
6.67 "
2712x1220
446 ppi
AMOLED
120 Hz
HDR10+, Dolby Vision
DC Dimming support
rounded screen edges
Gorilla Glass Victus 2
6.67 "
2712x1220
446 ppi
AMOLED
120 Hz
HDR10+, Dolby Vision
DC Dimming support
rounded screen edges
Gorilla Glass Victus 2
Brightness500 — 1200 nit
Display-to-body ratio90 %90 %
DCI-P3
Hardware
Operating systemAndroid 14Android 14
CPU modelDimensity 7300-UltraDimensity 7300-Ultra
CPU frequency2.5 GHz2.5 GHz
CPU cores88
GPUARM Mali-G615 MC2ARM Mali-G615 MC2
RAM12 GB12 GB
RAM typeLPDDR4XLPDDR4X
Memory storage512 GB512 GB
Storage typeUFS 2.2UFS 2.2
Memory card slotabsentabsent
Test results
AnTuTu Benchmark684 000 score(s)677 000 score(s)
Geekbench2913 score(s)2846 score(s)
Wild Life (Extreme)849 score(s)846 score(s)
Main camera
Lenses3 modules3 modules
Main lens
200 MP
f/1.65
1/1.4"
50 MP
f/1.5
Sony IMX882
Ultra wide lens
8 MP
f/2.2
8 MP
f/2.2
Macro lens
Full HD (1080p)60 fps60 fps
4K30 fps30 fps
Slow motion (slow-mo)240 fps240 fps
Image stabilizationopticaloptical
Flash
Front camera
Form factorin displayin display
Main selfie lens20 MP20 MP
Aperturef/2.2f/2.2
Full HD (1080p)60 fps60 fps
Connections and communication
Cellular technology
5G
5G
SIM card typenano+e-SIMnano-SIM
SIM slots2 SIM2 SIM
Connectivity technology
Wi-Fi 6 (802.11ax)
Bluetooth v 5.4
NFC
IrDA
Wi-Fi 6 (802.11ax)
Bluetooth v 5.4
NFC
IrDA
Inputs & outputs
USB C 2.0
USB C 2.0
Features and navigation
Features
in-display fingerprint scanner
stereo
Dolby Atmos
noise cancellation
gyroscope
light sensor
in-display fingerprint scanner
stereo
Dolby Atmos
noise cancellation
gyroscope
light sensor
Navigation
aGPS
GPS module
GLONASS
Galileo
digital compass
aGPS
GPS module
GLONASS
Galileo
digital compass
Power supply
Battery capacity5110 mAh5110 mAh
Fast chargingPower DeliveryPower Delivery 3.0
Charger power45 W45 W
Fast charging time100% in 52 min
General
WaterproofIP68IP68
Bezel/back cover materialmetal/plasticplastic
What's in the box?
case
screen protector
charger
 
Dimensions (HxWxD)162.33x74.42x8.4 mm162.33x74.42x8.4 mm
Weight190 g186 g
Color
Added to E-Catalogjanuary 2025january 2025
Glossary

Brightness

The maximum brightness in nits provided by the smartphone display.

The brighter the display, the more readable the picture remains on it under intense ambient light (for example, outdoors on a clear sunny day). Also, high brightness is important for the correct displaying of HDR content. However, a large amount of brightness affects the cost and power consumption of the screen. Manufacturers can specify standard, maximum, and peak brightness values. At the same time, an equal sign cannot be put between the maximum and peak brightness. The first indicates the ability of the screen to produce the specified brightness over its entire area, while the peak one — in a limited area and for a short time (mainly for HDR content).

Test results

The test results are specified either by a younger model in a line or a particular model, made for a better understanding performance of phone models if you compare phones against these parameters. For example, the 128 GB model has test results, and the 256 GB model has no information on the network, and in both models you will see the same value that will give an understanding of the overall performance of the device. But if the editorial office has information for each model individually, then each model will have its test results filled out, and the model with bigger RAM will have bigger values.

AnTuTu Benchmark

The result shown by a device when undergoing a performance test (benchmark) in AnTuTu Benchmark.

AnTuTu Benchmark is a comprehensive test designed specifically for mobile devices, primarily smartphones and tablets. It evaluates the efficiency of the processor, memory, graphics, and input/output systems, providing a clear impression of the system's capabilities. The higher the performance, the more points are awarded. Smartphones that score over 1.1M points are considered high-performance according to the AnTuTu ranking.

Like any benchmark, this test does not provide absolute precision: the same device can show different results, usually with deviations within 5-7%. These deviations depend on various factors unrelated to the system itself, such as the device's load from third-party programs and the ambient temperature during testing. Therefore, significant differences between two models can only be noted when the gap in their scores exceeds this margin of error.

Geekbench

The result shown by a device when undergoing a performance test (benchmark) in Geekbench.

Geekbench is a specialized benchmark designed for processors. Since version 4.0, it also includes tests for graphics processors, and by the end of 2019, version 5 of the benchmark was released. Typically, the specifications for portable gadgets include data specifically for the CPU. During testing, Geekbench simulates workloads that occur during real-world tasks, evaluating both single-core performance and the efficiency of multi-core operations. This provides a solid overview of the processor's capabilities in everyday use. Additionally, Geekbench is cross-platform, allowing for comparisons between the CPUs of different devices (smartphones, tablets, laptops, PCs). In reference materials, only the multi-core test results for the processor are usually provided.

Wild Life (Extreme)

The result was shown by the device when passing the Wild Life (Extreme) performance test (benchmark) from 3DMark.

The Wild Life (Extreme) benchmark offers two ways to test graphics performance: a quick test that evaluates instantaneous performance, and a longer test that subjects the device to sustained load. This way one can evaluate how stable performance remains and does not drop due to overheating or throttling. The benchmark is cross-platform, which makes it possible to compare devices running different OSs and even different classes (for example, smartphones and laptops).

It is important to understand that this test does not provide absolute accuracy. The same device can show different results — they depend on many factors not directly related to the system. The error caused by these factors is often on the order of 5–7%. So we can talk about a significant difference between the two models being compared if the difference in performance goes beyond the mentioned error.

Main lens

Specifications of the main lens of the rear camera installed in the phone. In models with several lenses (see “Number of lenses”), the main one is responsible for basic shooting capabilities and does not have a pronounced specialization (wide-angle, telephoto, etc.). Four main parameters can be indicated here: resolution, aperture ( high aperture optics are quite common), focal length, additional sensor data.

Resolution(in megapixels, MP)
Resolution of the sensor used for the main lens. Budget options are equipped with a module 8 MP and below, many models have 12 MP camera / 13 MP, also recently a trend towards increasing megapixels has been popular. Often in smartphones you can find the main photomodule at 48 MP, 50 MP< /a>, 64 MP and even 108 MP .

The maximum resolution of the resulting image directly depends on the resolution of the sensor; and the high resolution of the "picture", in turn, allows you to better display fine details. On the other hand, an increase in the number of megapixels in itself can lead to a deterioration in the overall image quality - due to the smaller size of each individual pixel, the noise level increases. As a result,...the direct resolution of the camera has little effect on the quality of the shooting - more depends on the physical size of the matrix, the features of the optics and various design tricks used by the manufacturer.

Aperture
Aperture describes the ability of a lens to transmit light. It is written as a fractional number, for example f/1.9. Moreover, the larger the number in the denominator, the lower the aperture ratio, the less light passes through the optics, all other things being equal. For example, an f/2.6 lens will be “darker” than f/1.9.

High aperture gives the camera a number of advantages. First, it improves the quality of shooting in low light. Secondly, it's possible to shoot at low shutter speeds, minimizing the effect of "stirring" and blurring of moving objects in the frame. Thirdly, with fast optics it is easier to achieve a beautiful background blur ("bokeh") — for example, when shooting portraits.

Focal length(in millimetres)
The focal length is a distance between the sensor and the centre of the lens (focused to infinity), at which the most clear image is obtained on the matrix. However, for smartphones, the specifications indicate not the actual, but the so-called equivalent focal length — a conditional indicator recalculated using special formulas. This indicator can be used to evaluate and compare cameras with different sensor sizes (the actual focal length cannot be used for this, since with a different sensor size the same real focal length will correspond to different viewing angles). (It is also worth saying that the equivalent focal length can be noticeably larger than the thickness of the case — there is nothing unusual in this, since this is a conditional, and not a real indicator).

Anyway, the field of view and the degree of magnification directly depend on the equivalent focal length: a larger focal length gives a smaller field of view and a larger size of individual objects that fall into the frame, and a decrease in this distance, in turn, allows you to cover more space. In most modern smartphones, the focal length of the main camera ranges from 13 to 35 mm; if compared with the optics of traditional cameras, then lenses with equivalent focal length up to 25 mm can be attributed to wide-angle lenses, more than 25 mm — to universal models “with a bias towards wide-angle shooting”. Such values are chosen due the fact that smartphones are often used for shooting in cramped conditions, when a fairly large space needs to fit into the frame at a small distance. Enlargement of the picture, if necessary, is most often carried out digitally — due to the reserve of megapixels on the sensor; but there are also models with optical zoom (see below) — for them, not one value is given, but the entire working range of the equivalent focal length (recall, optical zoom is carried out by changing the focal length).

Field of view(in degrees). It characterizes the size of the area covered by the lens, as well as the size of individual objects "seen" by the camera. The larger this field, the more of the scene gets into the frame, but the smaller the individual objects in the image are. The field of view is directly related to the focal length (see above): increasing this distance narrows the field of view of the lens, and vice versa.

Note that this parameter is generally considered important for professional use of the camera rather than for amateur photography. Therefore, viewing angle data is given mainly for smartphones equipped with advanced cameras — including in order to emphasize the high class of cameras. As for specific values, for the main lens they usually are in the range from 70° to 82° — this corresponds to the general specifics of such optics (universal shooting with an emphasis on general scenes and extensive coverage at short distances).

Additional Sensor Data
Additional information regarding the sensor installed in the main lens. This item can specify both the size (in inches) and the sensor model, and sometimes both parameters at once. Anyway, such data is provided only if the device is equipped with a high-end sensor. With the model, everything is quite simple: knowing the name of the sensor, you can find detailed data on it. The size is worth considering a little more.

The size of the sensor is traditionally indicated in fractional parts of an inch — accordingly, for example, a 1/2.3" sensor will be larger than 1/2.6". Larger sensors are considered more advanced, as they provide better image quality at the same resolution. The logic here is simple - due to the large sensor area, each individual pixel is also larger and gets more light, which improves sensitivity and reduces noise. Of course, the actual image quality will also depend on a number of other parameters, but in general, a larger sensor size usually means a more advanced camera. In advanced photo flagships, you can find matrices with a physical size of 1”, which is comparable to image sensors used in top compact cameras with fixed lenses.

SIM card type

The type of SIM card used in the mobile phone. The term SIM here means all types of cards for identification in mobile networks, including 3G networks, CDMA, etc. (although formally such cards may have other names). The type of such a card is primarily described by its form factor. Here are the most common options:

— micro SIM. The largest type of sim cards widely used in modern devices: its' size is 15x12 mm. It was introduced back in 2010, nowadays it is being replaced by more compact and advanced nano-SIM and eSIM. Keep in mind that a microSIM card can be made by simply cutting a larger mini-SIM to the dimensions mentioned above. However this is associated with a certain risk and requires accuracy, so it is better to contact your mobile carrier to replace the SIM card with a suitable one.

— Nano-SIM. The smallest form factor of classic (replaceable) SIM-cards is 12x9 mm. In such cards the frames are cut off almost to the very chip. This standard appeared back in 2012, but it is still extremely common. Like microSIM, a card for a slot of this format can be made by cutting a larger SIM card, but this requires extreme accuracy and is not recommended.

e-SIM. This type of SIM card is an electronic module that is built directly into the device and cannot be replaced. To authorize in the network of a mobile carrier, you need to make the appropriate settings in the eSIM. Those m...odules are able to save several sets of settings at once, which makes it easy to switch between different carriers — no need to bother with the physical replacement of the SIM card, just change the profile in the settings. Another advantage of such modules is compactness. However, before buying a phone with an eSIM, you should clarify whether this technology is supported by your mobile carrier — even nowadays, not every network is compatible with such modules.

— nano+eSIM. An option found in smartphones with two SIM cards. The built-in eSIM module in such a device is complemented by a slot for a replaceable nanoSIM card. The features of each of these card types are detailed above. It is convenient to keep the main phone number (s) on eSIM, and use replacement cards for temporary numbers. Such scenario may come in handy if you travel abroad a lot — you can install cards from local carriers in the traditional nanoSIM slot.

Fast charging

Fast charging technology supported by the device.

By itself, fast charging, as the name suggests, reduces the charging time compared to the standard procedure. For this, increased voltage and/or current strength is used, as well as a special "smart" process control. But the possibilities and features of such charging may be different, depending on the specific technology used in the device. The same technology must be supported by the charger — this is the only way to guarantee the proper operation. However some types of fast charging are mutually compatible — but this point should be clarified separately, and compatibility is not always complete.

Here is a brief description of the most popular technologies nowadays:

— Quick Charge (1.0, 2.0, 3.0, 4.0, 5.0). Technology created by Qualcomm and used in smartphones with Qualcomm processors. The later the version, the more advanced the technology: for example, Quick Charge 2.0 provides 3 fixed voltage options, and version 3.0 has a smooth adjustment in the range from 3.6 to 20 V. Most often, devices with a newer version of Quick Charge are also compatible with older chargers, but for full use, an exact match in versions is desirable.
Also note that certain versions of Quick Charge have become the basis for some other technologies, such as Asus BoostMaster and Meizu mCharge. However, again, the mutual compatibility of devices supporting these technologies...needs to be clarified separately.

— Pump Express. Own development of MediaTek, used in smartphones with processors of this brand. Also available in several versions, with improvements and additions as it develops.

— Samsung Charge (Samsung Fast Charge, Adaptive Fast Charging). Samsung's proprietary fast charging technology. It has been used without any changes since 2015, so it looks quite modest against the newer standards. Nevertheless, it is able to provide good speed, especially for the first 50% of the charge.

— Power Delivery (Power Delivery 2.0). "Native" fast charging technology for the USB-C connector; can be used in smartphones of different brands equipped with such a connector. Also note that Power Delivery is supported not only by chargers and power banks, but also by separate USB ports of computers and laptops.

— Asus BoostMaster. Proprietary technology used in Asus smartphones. The specs are similar to Quick Charge 2.0; noticeably inferior to many more modern formats, but generally quite effective.

—Meizu mCharge. Meizu proprietary technology. It is interesting, in particular, because it combines Quick Charge from Qualcomm and Pump Express Plus from MediaTek; compatibility with these technologies needs to be specified separately, however, problems in this regard do not occur so often.

— Huawei PowerUp. One of Huawei's proprietary technologies. Formally similar to Quick Charge 2.0, but used with both Qualcomm and other brands of mobile CPUs, so compatibility is not guaranteed. In general, it is considered obsolete, gradually being replaced by more advanced standards like the SuperCharge Protocol.

— Huawei SuperCharge Protocol. Another proprietary technology from Huawei introduced in 2016; for 2021 is available in several versions. In some devices, the power of such charging exceeds 60 V — not a record, but a very solid indicator.

— Honor SuperCharge. A technology used mainly in advanced Honor smartphones. Until 2020, this brand belonged to Huawei, so Honor SuperCharge is, in fact, the same Huawei SuperCharge Protocol, only with improvements (at least in devices released after 2020).

— OnePlus Dash Charge. A relatively old proprietary standard from OnePlus. An interesting feature is that in some devices the effectiveness of Dash Charge is practically independent of the use of the screen: when the display is on, the battery charges at almost the same rate as when it is off. Technically a licensed version of OPPO's VOOC, however, these technologies are not compatible. Since 2018, Dash Charge has been gradually superseded by Warp Charge.

— OnePlus Warp Charge. OnePlus proprietary standard, released in 2018, including to replace Dash Charge. It is positioned as a technology that can function effectively even with intensive use of the smartphone — in particular, during games.

— Oppo VOOC. OPPO technology, used both in branded smartphones and in equipment from other brands. Available in several versions; The latest (for 2021) version of SuperVOOC is for 2-cell batteries and is sometimes listed as a separate technology called Oppo SuperVOOC Flash Charge.

— Oppo Super Flash Charge (SuperVOOC Flash Charge). Development of Oppo VOOC technology. One of the fastest (for 2021) charging technologies, it allows you to charge a 4000 mAh battery in just over half an hour. Provides for the use of special two-cell batteries.

— Vivo Flash Charge. Proprietary technology from Vivo. It features high power and speed: the process of charging a 4000 mAh battery takes only 13 minutes.

— Realme Dart Charge. Proprietary Realme brand technology. It has average, by modern standards, indicators of power and speed.

— Motorola Turbo Power. Motorola proprietary technology, found in almost all modern smartphones and tablets of this brand, as well as in separate devices from Lenovo. Available in several versions. It 's not super fast, but in general it has quite decent specs; in addition, devices with Turbo Power are also fully compatible with chargers that support Quick Charge (version 2.0 and higher).

Fast charging time

Battery charging time claimed by the smartphone manufacturer. Indicated for the "native" charger, usually wired; when using third-party chargers, the numbers may differ (usually in the direction of increasing time)

In modern mobile phones, the charging time is traditionally indicated in the format “X% in Y minutes”. This time can be given both for a 100% charge (that is, for a full charge of a battery set to zero), and for a partial one — for example, "50% in 30 minutes" or "60% in 34 minutes". Such a partial designation is convenient, first of all, in cases where there is not much time for charging, but 100% charge is not required — it is enough for the device to work long enough to get to the main charging point. However, note that the numbers in such designations do not correspond as accurately to the capabilities of the battery as it might seem. The fact is that the batteries of mobile devices have an uneven charging rate: at first (if you charge from zero), it is high, and as it approaches 100%, it gradually decreases. Two points follow this. Firstly, the claimed speed is achieved only when charging the battery from 0%; if the battery is not completely discharged, then the time will be longer. Simply put, the designation, for example, "50% in 30 minutes" is valid only for the option "from 0% to 50%"; other similar cases (say 20% to 70%) will take noticeably longer. Secondly, the rate of full charge will not be strictly proportional to the rate of partial char...ge. For example, the same "50% in 30 minutes" does not mean "100% in 60 minutes" — in the second case, the charging time will also be longer.

Due to all this, only phones that have the same number of percentages given in this paragraph can be compared with each other in terms of charging time. Also note that some manufacturers give both parameters in the specs at once — partial and full charge time. This designation is the most reliable and clear.
Xiaomi Redmi Note 14 Pro 5G often compared
Poco X7 often compared