United Kingdom
Catalog   /   Mobile Phones & Gadgets   /   Mobile Phones & Accessories   /   Mobile Phones

Comparison Nubia Red Magic 10 Pro Plus 512 GB / 16 GB vs Nubia Red Magic 10 Pro 256 GB / 12 GB

Add to comparison
Nubia Red Magic 10 Pro Plus 512 GB / 16 GB
Nubia Red Magic 10 Pro 256 GB / 12 GB
Nubia Red Magic 10 Pro Plus 512 GB / 16 GBNubia Red Magic 10 Pro 256 GB / 12 GB
Expecting restockCompare prices 1
TOP sellers
Cooling fan (up to 23 thousand rpm). Touch gaming triggers on the ends of the case (up to 520 Hz touch polling frequency). Silicon-carbon battery.
Cooling fan (up to 23 thousand rpm). Touch gaming triggers on the ends of the case (up to 520 Hz touch polling frequency). Silicon-carbon battery.
Display
Main display
6.85 "
2688x1216
431 ppi
AMOLED
144 Hz
DC Dimming support
6.85 "
2688x1216
431 ppi
AMOLED
144 Hz
DC Dimming support
Display-to-body ratio92 %92 %
DCI-P3
Hardware
Operating systemAndroid 15Android 15
CPU modelSnapdragon 8 EliteSnapdragon 8 Elite
CPU frequency4.32 GHz4.32 GHz
CPU cores88
Processor rating AnTuTu170170
GPUAdreno 830Adreno 830
RAM16 GB12 GB
RAM typeLPDDR5XLPDDR5X
Memory storage512 GB256 GB
Storage typeUFS 4.0UFS 4.1
Memory card slotabsentabsent
Liquid cooling
Test results
AnTuTu Benchmark3291 000 score(s)2687 000 score(s)
Geekbench9833 score(s)
Wild Life (Extreme)5820 score(s)
Main camera
Lenses3 modules3 modules
Main lens
50 MP
f/1.88
50 MP
f/1.88
Ultra wide lens
50 MP
f/2.2
OmniVision OV50D,
50 MP
f/2.2
OmniVision OV50D,
Macro lens
Full HD (1080p)60 fps60 fps
4K60 fps60 fps
> 4K7680x4320, 30 fps7680x4320, 30 fps
Slow motion (slow-mo)240 fps240 fps
Image stabilizationopticaloptical
Flash
Front camera
Form factorunder displayunder display
Main selfie lens16 MP16 MP
Aperturef/2.0f/2.0
Full HD (1080p)60 fps60 fps
Connections and communication
Cellular technology
5G
5G
SIM card typenano-SIMnano-SIM
SIM slots2 SIM2 SIM
Connectivity technology
Wi-Fi 7 (802.11be)
Bluetooth v 5.4
NFC
IrDA
Wi-Fi 7 (802.11be)
Bluetooth v 5.4
NFC
IrDA
Inputs & outputs
USB C 3.2 gen2
mini-jack (3.5 mm)
USB C 3.2 gen2
mini-jack (3.5 mm)
Features and navigation
Features
in-display fingerprint scanner
stereo
DTS:X Ultra
Hi-Res Wireless
noise cancellation
gyroscope
light sensor
in-display fingerprint scanner
stereo
DTS:X Ultra
Hi-Res Wireless
noise cancellation
gyroscope
light sensor
Navigation
aGPS
GPS module
Dual GPS
GLONASS
Galileo
digital compass
aGPS
GPS module
Dual GPS
GLONASS
Galileo
digital compass
Power supply
Battery capacity7050 mAh7050 mAh
Fast chargingPower DeliveryPower Delivery
Charger power120 W100 W
General
Bezel/back cover materialmetal/glassmetal/glass
What's in the box?
charger
charger
Dimensions (HxWxD)163.4x76.1x8.9 mm163.4x76.1x8.9 mm
Weight229 g229 g
Color
Added to E-Catalognovember 2024november 2024
Glossary

RAM

The parameter determines the overall performance of the smartphone: the more RAM, the faster the device works and the better it copes with an abundance of tasks and / or resource-intensive applications (ceteris paribus). This is even more true in light of the fact that large amounts of "RAM" are usually combined with powerful advanced processors. However, only devices with identical operating systems can be directly compared with each other, and in the case of Android, with the same versions and editions of this OS (for more on all this, see "Operating system"). This is due to the fact that different operating systems and even different versions of the same OS can differ markedly in terms of RAM requirements. For example, iOS, thanks to good optimization for specific devices, is able to work efficiently with 3 GB of RAM. For modern versions of Android in the regular edition (not Go Edition), the mentioned 3 GB is actually the required minimum. Under such an OS, it is better to have at least 4 GB or 6 GB of RAM. In high-end devices with powerful electronic "stuffing" you can also find more impressive numbers - 8 GB or even 12 GB or more.

Memory storage

The volume of storage installed in the phone.

This volume directly determines how much data can be stored on the phone without using removable memory cards. This indicator is especially important for models that don't have memory card slots. However, even if memory cards are supported, built-in storage is still preferable: at least it works faster, and it usually has fewer restrictions on its use (in particular, most smartphones allow you to install applications only on storage).

As for specific volumes, the actual minimum for a modern smartphone is 32 GB; less “capacious” devices are becoming increasingly rare these days. 64 GB is considered a comfortable minimum, 128 GB is considered average indicator, 256 GB - above average. Some high-end devices are equipped with 512 GB and even 1 TB< /a>.

We also note that the actual amount of memory available to the user will inevitably be somewhat less than the total, since part of the drive is occupied by operating system files.

Storage type

The type of the phone's storage.

The specification determines, first of all, the speed of the memory, and, accordingly, the performance of the device as a whole (especially when working with large amounts of data or resource-intensive applications). Nowadays, there are two basic specifications — eMMC and UFS; each of them has several versions. In general, storages with UFS 3.1 and UFS 4.0 are the fastest and most advanced today, but they cost accordingly, and therefore are used mainly in premium smartphones. A more detailed description of these standards looks like this:

— eMMC. One of the simplest and most affordable standards for solid state memory — for example, this specification is used by most flash drives. In smartphones and other portable gadgets, this standard was generally accepted until 2016, when the introduction of UFS began; however, even now it is very popular — mainly due to its low cost and low power consumption. But the speeds of eMMC are noticeably lower than those of UFS. So, in the latest version of eMMC 5.1A (2019), the read speed is up to 400 MB/s, and the earlier and more common version of eMMC 5.1 provides up to 250 MB/s in read mode, up to 125 MB/s in sequential write mode and all only up to 7.16 MB/s with random writes (in other words, in application mode).

— UFS. A solid state drive standard designed to be a faster, more advanced successor to eMM...C. In addition to the increased data exchange speeds, the format of work has also been changed in UFS — it is fully duplex, that is, reading and writing can be performed simultaneously (whereas in eMMC these processes were performed in turn). Also, efficiency in random read and write mode has been significantly improved, which has a positive effect on the quality of work with applications. Specific data exchange rates and features of work depend on the version of UFS, nowadays you can find the following options:
  • 2.0. The earliest of the versions found in modern smartphones; was released back in 2013. Provides data transfer rates up to 1.2 GB/s, the maximum available in this version. The newer version 2.1 has the same speeds, but it is supplemented with a number of important innovations. Therefore, UFS 2.0 memory is rarely used in mobile phones.
  • 2.1. The first of the versions that are widely used in smartphones; was released in 2016. In terms of speed, it does not differ from version 2.0 described above, and the main differences are in some improvements. In particular, UFS 2.1 introduced storage status indicator (“health”), the ability to remotely update the firmware, as well as a number of solutions aimed at improving overall reliability.
  • 2.2. An evolution of the UFS 2.x standard introduced in Summer 2020. A key improvement is the introduction of the WriteBooster feature (originally introduced in UFS 3.1); this feature allows you to significantly increase the write speed and, accordingly, the overall performance in tasks like running applications.
  • 3.0. A version released in 2018 and implemented in hardware a year later. The throughput was increased to 2.9 GB/s per two lines (1.45 GB/s per one), new versions of the M-PHY electronic protocol (physical layer) and UniPro based on it were introduced, the reliability of working with data and the temperature mode of operation of the controllers has been expanded (theoretically, it can range from -40 °С to 105 °С). UFS 3.0 is used mainly in fairly advanced smartphones, although in the future we can expect this specification to be extended to more modest models.
  • 3.1. The successor to the UFS 3.0 standard, officially introduced in early 2020. It is positioned as a specification created specifically for high-performance mobile devices and aimed at increasing speed while minimizing power consumption. To do this, UFS 3.1 has a number of innovations: a non-volatile Write Booster cache to speed up writing; special DeepSleep power saving mode for relatively simple and inexpensive systems; as well as the Performance Throttling Notification feature, which allows the drive to send overheating signals to the control system. In addition, this standard may additionally provide support for the HPB extension, which improves reading speed.
  • 4.0. UFS 4.0 doubled the throughput per lane (23.2 Gbps per lane) and improved energy efficiency by about 46% (compared to the previous 3.1 specification). UFS 4.0 standard memory modules provide maximum read speed up to 4200 MB/s, write speed up to 2800 MB/s. The high bandwidth makes the memory standard ideal for 5G smartphones.

Test results

The test results are specified either by a younger model in a line or a particular model, made for a better understanding performance of phone models if you compare phones against these parameters. For example, the 128 GB model has test results, and the 256 GB model has no information on the network, and in both models you will see the same value that will give an understanding of the overall performance of the device. But if the editorial office has information for each model individually, then each model will have its test results filled out, and the model with bigger RAM will have bigger values.

AnTuTu Benchmark

The result shown by a device when undergoing a performance test (benchmark) in AnTuTu Benchmark.

AnTuTu Benchmark is a comprehensive test designed specifically for mobile devices, primarily smartphones and tablets. It evaluates the efficiency of the processor, memory, graphics, and input/output systems, providing a clear impression of the system's capabilities. The higher the performance, the more points are awarded. Smartphones that score over 1.1M points are considered high-performance according to the AnTuTu ranking.

Like any benchmark, this test does not provide absolute precision: the same device can show different results, usually with deviations within 5-7%. These deviations depend on various factors unrelated to the system itself, such as the device's load from third-party programs and the ambient temperature during testing. Therefore, significant differences between two models can only be noted when the gap in their scores exceeds this margin of error.

Geekbench

The result shown by a device when undergoing a performance test (benchmark) in Geekbench.

Geekbench is a specialized benchmark designed for processors. Since version 4.0, it also includes tests for graphics processors, and by the end of 2019, version 5 of the benchmark was released. Typically, the specifications for portable gadgets include data specifically for the CPU. During testing, Geekbench simulates workloads that occur during real-world tasks, evaluating both single-core performance and the efficiency of multi-core operations. This provides a solid overview of the processor's capabilities in everyday use. Additionally, Geekbench is cross-platform, allowing for comparisons between the CPUs of different devices (smartphones, tablets, laptops, PCs). In reference materials, only the multi-core test results for the processor are usually provided.

Wild Life (Extreme)

The result was shown by the device when passing the Wild Life (Extreme) performance test (benchmark) from 3DMark.

The Wild Life (Extreme) benchmark offers two ways to test graphics performance: a quick test that evaluates instantaneous performance, and a longer test that subjects the device to sustained load. This way one can evaluate how stable performance remains and does not drop due to overheating or throttling. The benchmark is cross-platform, which makes it possible to compare devices running different OSs and even different classes (for example, smartphones and laptops).

It is important to understand that this test does not provide absolute accuracy. The same device can show different results — they depend on many factors not directly related to the system. The error caused by these factors is often on the order of 5–7%. So we can talk about a significant difference between the two models being compared if the difference in performance goes beyond the mentioned error.

Charger power

The power at which the phone is charged in normal mode.

The higher the charging power, the less time spent on it (with the same battery capacity). Thus, very fast charging means charging power of 65 W or more. But this parameter does not directly affect compatibility with chargers: modern devices are able to work with “chargers” of both higher and lower power. At the same time, in the first case, the battery controller will automatically limit the charging current, and in the second, charging will simply take more time. Accordingly, the standard charger may be of less power. And when looking for a third-party charger, you should focus on the allowable charging power indicated in the specifications — this will give the maximum guarantee against malfunctions.
Nubia Red Magic 10 Pro Plus often compared
Nubia Red Magic 10 Pro often compared