United Kingdom
Catalog   /   Sound & Hi-Fi   /   Hi-Fi & Hi-End Components   /   Amplifiers

Comparison Magnat MA 700 vs Atoll IN100SE

Add to comparison
Magnat MA 700
Atoll IN100SE
Magnat MA 700Atoll IN100SE
from £611.70 
Outdated Product
from $920.00 up to $1,375.00
Outdated Product
User reviews
1
0
0
1
TOP sellers
Device typeintegrated amplifierintegrated amplifier
Element basehybridtransistor
Tubes typeECC 81 tube
Toroidal transformer
Capacitor capacitance30 mF
Amplifier parameters
Number of channels22
Frequency range20 – 20000 Hz5 – 80000 Hz
Power per channel (8Ω)50 W100 W
Power per channel (4Ω)70 W140 W
Signal to noise ratio102 dB100 dB
Channel sensitivity / impedance
Line input
 
100 mV
47 kOhm
Phono MM/MC
82 / - mV
47 /- kOhm
 
Connectors
Inputs
USB A
coaxial S/P-DIF
optical
 
To amplifier (Main)RCA
RCA5 pairs5 pairs
Outputs
to subwoofer
Pre-Amp
For acoustics2 шт2 шт
REC (to recorder)1 pairs1 pairs
On headphones6.35 mm (Jack)3.5 mm (mini-Jack)
Front panel
audio input jack
headphone output
indicators
headphone output
Features
Adjustments
bass control
balance adjustment
level adjustment
level adjustment
More features
ММ phono stage
Bluetooth
By-pass/Direct
General
Remote control
PSUinternalinternal
Power consumption300 W
Standby consumption0.5 W
Dimensions (WxDxH)433x300x116 mm440х270х90 mm
Weight7.4 kg10 kg
Color
Added to E-Catalogseptember 2022january 2014
Glossary

Element base

transistor. The term "semiconductor" is also used, since it is on such materials that the operation of transistors is based. Such an element base is the most popular in modern amplifiers: transistors are able to provide high sound quality with a minimum of distortion, while they are inexpensive, unpretentious in use, do not require powerful cooling systems, and are also resistant to shock and shaking. However they can somewhat lose to lamps in terms of the “atmospheric” sound (for more details, see below); however, this is already a matter of personal tastes of each user.

Lamp. Element base built on radio tubes. Historically, this variant predates the transistor variant, but pure tube amps are now relatively rare. This is due not only to the high cost of such devices, but also to their large dimensions and some inconvenience in use: after switching on, it takes some time to “warm up”, and the lamps themselves have a relatively short service life. In addition, tube amplifiers are significantly inferior to transistor amplifiers in terms of signal purity (in particular, harmonic coefficient, see below); however, this point cannot be called a clear disadvantage. The fact is that distortion from tube circuits is much more pleasant to the ear than from transistor ones; moreover, they are one of the components of the notorious "warm tube sound". Therefore, most modern tube amplifiers belong to the Hi-E...nd category and are designed for lovers of such a sound.

Hybrid. Amplifiers that combine both of the above types of circuits in their design. Thanks to this, it becomes possible to achieve a characteristic "tube" sound at a relatively low cost and acceptable dimensions of the device. Most of these models are of the integrated type (see above) and combine a tube preamp with transistor output stages.

Tubes type

The model of tubes installed in a tube or hybrid type amplifier (see "Element base"). The capabilities of the device largely depend on the lamps used in the design, including small details of the sound, not directly spelled out in the characteristics. In addition, this information allows, to some extent, to assess the overall level of the model. On the other hand, in fact, it can only be useful to extremely demanding listeners, attentive to every detail; most users, including audiophiles, will only need information about the type of tubes when they need to be replaced.

Toroidal transformer

Most modern amplifiers have toroidal transformers - with a toroid-shaped core, in other words, a donut. This type is considered optimal for amplifiers of any level up to Hi-End: it creates a minimum of "extra" electromagnetic radiation and, accordingly, interference. Some time ago, E-core transformers were also widely used, but they are considered obsolete and are becoming less common today.

Capacitor capacitance

The total capacitance of the capacitors installed in the power supply of the amplifier. Usually, for ordinary lovers of high-quality sound, this indicator is not practically significant: the capacitance is selected in such a way as to optimally (or at least minimally) match the characteristics of the amplifier. However, for demanding audiophiles who pay attention to the smallest details of audio system components, capacitors are also often of interest.

The fact is that they are an important part of the rectifier circuit — they smooth out current fluctuations that arise both due to the imperfection of the rectifiers themselves and due to various external factors. Knowing the total capacitance of the capacitors, one can also evaluate the efficiency of their work: the higher this indicator, the more stable the power supply will work and the lower the likelihood of sound distortion due to its fault. There are special formulas that allow you to derive the optimal capacitance of capacitors depending on the type, power and other parameters of the amplifier; they can be found in specialized sources.

Frequency range

The range of audio frequencies that the amplifier is capable of handling. The wider this range, the more complete the overall picture of the sound, the less likely it is that too high or low frequencies will be “cut off” by the output amplifier. However, note that the range of sound audible to a person is on average from 16 Hz to 20 kHz; There are some deviations from this norm, but they are small. At the same time, modern Hi-Fi and Hi-End technology can have a much wider range — most often it is a kind of "side effect" of high-end circuits. Some manufacturers may use this property for promotional purposes, but it does not carry practical value in itself.

Note that even within the audible range it does not always make sense to chase the maximum coverage. It is worth, for example, to take into account that the actually audible sound cannot be better than the speakers are capable of giving out; therefore, for a speaker system with a lower threshold of, say, 70 Hz, there is no need to look for an amplifier with this figure of 16 Hz. Also, do not forget that a wide frequency range in itself does not absolutely guarantee high sound quality — it is associated with a huge number of other factors.

Power per channel (8Ω)

The nominal sound power output by the amplifier per channel when operating with a load having a dynamic resistance (impedance) of 8 ohms. In our catalog, this parameter is indicated for the mode when all channels of the amplifier work under load (see "Number of channels"); in the presence of unused channels, the rated power may be slightly higher, but this mode cannot be called standard.

Rated power can be simply described as the highest output signal power at which the amplifier is able to work stably for a long time (at least an hour) without negative consequences. These are average figures, because in fact, the audio signal is by definition unstable, and individual level jumps can significantly exceed the rated power. However, it is she who is the main basis for assessing the overall loudness of the sound.

This indicator also determines which speakers can be connected to the amplifier: their rated power should not be lower than that of the amplifier.

According to the laws of electrodynamics, with different dynamic load resistance, the output power of the amplifier will also be different. In modern speakers, the standard values \u200b\u200bare 8, 6, 4 and 2 Ohms, and power levels are indicated for them.

Power per channel (4Ω)

The nominal sound power output by the amplifier per channel when a load with a dynamic resistance (impedance) of 4 ohms is connected to it. See Power per Channel (8Ω) for more information on power rating and its relationship to impedance.

Signal to noise ratio

In itself, the signal-to-noise ratio is the ratio of the level of pure sound produced by the amplifier to the level of extraneous noise that occurs during its operation. This parameter is the main indicator of the overall sound quality — and very clear, because. its measurement takes into account almost all the noise that affects the sound in normal operating conditions. A level of 70 – 80 dB in modern amplifiers can be considered acceptable, 80 – 90 dB is not bad, and for advanced audiophile-class devices, a signal-to-noise ratio of at least 100 dB is considered mandatory.

If the specifications do not specify for which output the signal-to-noise ratio is indicated, it usually means its value for the linear input (see "RCA (par)"). This is quite enough to evaluate the quality of the device for this parameter. However, some manufacturers indicate it for other inputs — Main, Phono; see below for more on this.

Line input

The sensitivity and dynamic impedance of the amplifier when a signal is applied to the RCA line input.

Under the sensitivity of any input (except optical) is meant the lowest signal voltage at this input, at which the amplifier is able to provide normal nominal power values (see "Power per channel (8Ω)"). This parameter determines, first of all, the requirements for the signal source. On the one hand, the voltage provided by this source must not be lower than the input sensitivity of the amplifier, otherwise the latter simply will not give the claimed characteristics. However, a significant excess in voltage should not be allowed, otherwise the sound will begin to be distorted. More detailed recommendations on choosing an amplifier by sensitivity are described in special sources.

For any input other than optical, it is believed that the higher this indicator, the less distortion the amplifier introduces into the signal. The minimum level of input impedance in modern models is considered to be 10 kOhm, and in high-end devices it can reach several hundred kOhm.
Magnat MA 700 often compared
Atoll IN100SE often compared